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ABSTRACT

In this paper we study the problem of context modeling
and entropy coding of the symbol streams generated by
the well-known EZW image coder (embedded image coding
using zerotrees of wavelet coe�cients). We present some
simple context modeling techniques that can squeeze out
more statistical redundancy in the wavelet coe�cients of
EZW-type image coders and hence lead to improved cod-
ing e�ciency.

1. INTRODUCTION

There seems to be a general consensus that wavelet im-
age coders, e.g., [5, 4], are so far the best performed lossy
compression techniques in the range of medium to low bit
rates. The success of wavelet image coders is largely due
to the good local properties of wavelet transforms in both
frequency and spatial domains. That is, with wavelet trans-
forms, one can identify both the spectral and spatial loca-
tions of signi�cant image features. This localization fea-
ture of wavelet transforms is extremely desirable for image
compression, because one can then economically allocate
bits to frequency ranges and spatial locations that are im-
portant to visual quality of reconstructed images. Good
examples of utilizing wavelet localization property for im-
age compression are the well-known technique of embedded
image coding using zerotrees of wavelet coe�cients (EZW
algorithm) [5], and its variants such as [4, 6]. The EZW
algorithm is in essence an integrated method of quantizing
and entropy-coding wavelet coe�cients. The quantizer em-
ployed by the zerotree technique is one of successive scalar
quantization resembling bit plane encoding. Despite using
scalar, successive quantization which is theoretical inferior
to one-pass vector quantizer, image coders of the EZW type
obtained some of the best compression results on common
test images that were reported in the literature, while facil-
itating progressive reconstruction and transmission.

The good performance of zerotree-based wavelet coders is
due to two important properties of the zerotree data struc-
ture. First, zerotrees, by taking advantage of the localiza-
tion property of wavelet transform and the fact that natu-
ral images tend to have decaying spectrums, organize small
wavelet coe�cients into a quadtree hierarchy for compact
encoding. A quadtree of insigni�cant wavelet coe�cients
(zeros after quantization), called zerotree in EZW, can be
considered as a two-dimensional zero run. Embedding a

zerotree structure into a wavelet transform for entropy cod-
ing of the wavelet coe�cients has the same e�ect as zig-zag
scanning and run-length encoding of DCT coe�cients.

Second, the successive quantization scheme used by the
EZW algorithm produces very small alphabets to facilitate
adaptive entropy coding. There are only 2, 3 or 4 distinct
symbols in particular segments of the zerotree code stream.
From universal source coding point of view, a source drawn
from a smaller alphabet can be better modeled as a Markov
chain, and hence more e�ciently coded than a source from
a larger alphabet. Since the number of states of a Markov
model increases exponentially in alphabet size, adaptive en-
tropy coding based on Markov modeling quickly becomes
impractical and ine�cient as the number of source symbols
increases. The zerotree technique cleverly reduces the al-
phabet of wavelet coe�cients to no more than four symbols
by bit plane encoding. This alphabet reduction technique
shares the same spirit as binary arithmetic coders that en-
code an m-ary symbol as outcomes of a sequence of binary
decisions [1].

In this paper we will reexamine the problem of entropy
coding of quantized wavelet coe�cients in the framework
of zerotrees. Speci�cally, we propose some more sophisti-
cated context modeling techniques than the second-order
Markov modeling suggested by the original zerotree paper
[5]. In his widely-cited work [5] Shapiro observed \the cod-
ing gains provided by using this simple Markov conditioning
may not justify the added complexity and using a single his-
togram strategy for the dominant pass performs almost as
well (0.12 dB worse for Lena at 0.25 bpp)." This research
showed, however, that there exists much higher statistical
redundancy than what might be implied by Shapiro's ob-
servation in the symbol stream of the so-called dominant
pass of the EZW algorithm.

2. CONTEXT MODELING OF EZW

COEFFICIENTS AND MODEL COST

Shapiro's negative observation is true in the sense that sim-
ply increasing the order of Markov modeling will get di-
minishing compression gains. But this does not imply that
higher-order dependency between wavelet coe�cients does
not exist. Instead, it points to a pivotal issue called model

cost in universal source coding [2]. Intuitively speaking, the
better the model �ts the source, the shorter the codelength
an entropy coder like adaptive arithmetic coder can achieve.
But in universal source coding in which no prior knowledge



of the source is available, the model itself must be either
explicitly sent to the decoder or learned on the 
y from the
symbol stream. In the former case, we need to add side
information to the total description length of the source.
In the latter case, the learning takes time to �t a statistical
model to the source. The higher the model complexity (i.e.,
the more model parameters), the longer the time to \learn"
the model. Before the model converges to the underlying
statistics through on-line learning, entropy coding cannot
reach the minimum codelength of the coded symbols. Thus
not only how well the model �ts the source and also how fast
the �t can be achieved a�ect the total description length.
Since in either case the model complexity contributes to the
total description length of the source, Rissanen analytically
formulated this phenomenon as the so-called \model cost"
in his theory of minimum description length.
Entropy coding of quantized EZW coe�cients is just a

special form of lossless image coding with symbol depen-
dency of structures unique to zerotrees. The e�ciency
of any lossless image codec is governed by how well it
can model the high-order statistical redundancy at a low
model cost. Recently we made progress in context modeling
for lossless image coding, and developed CALIC (Context-
based, Adaptive, Lossless Image Codec [7, 8]) which is the
current state of the art. In the reported work we generalized
some of CALIC's context modeling techniques to wavelet
coe�cient coding, and achieved better rate-distortion per-
formance than existing methods.
Due to the popularity of the EZW algorithm in this re-

search community, we simply adopt the same terminology
of Shapiro's original paper [5] without redescribing the al-
gorithm. The EZW symbols are drawn from three dif-
ferent alphabets �1 = f0; 1g, �2 = fP;N;ZR; IZg, and
�3 = fP;N;Zg. Letters 0 and 1 in �1 are the outputs
of the EZW algorithm when it is in a subordinate pass to
re�ne quantization precision, being 0 if a signi�cant coe�-
cient is below the current quantizer threshold or 1 otherwise.
Letters P , N , ZR, and IZ of �2 stand for positive sig-
ni�cant coe�cient, negative signi�cant coe�cient, zerotree
root, and isolated zero, the four cases in a dominant pass
of the EZW algorithm over subbands other than the three
highest resolution subbands HH, HL, and LH. Letters P ,
N , and Z of �3 stand for the outputs of a dominant pass
over subbands HH, HL, and LH in which there is no need to
distinguish between zerotree roots and isolated zeros. We
observed that bit streams out of �1 in subordinate passes
were hardly compressible even by high-order entropy cod-
ing. Some researchers independently had the same obser-
vation [4]. Thus we simply output the bit streams of �1 as
they are, and focus on context modeling and entropy coding
of symbol streams out of �2 and �3.
Suppose that we are to sequentially encode a sequence

of EZW symbols x1; x2; � � � ; xn. The symbol sequence is
determined by the way in which an EZW-type algorithm
scans the EZW coe�cients. The minimum codelength of
the sequence in bits is given by

� log2

nY

i=1

P (xijxi�1; � � � ; x1): (1)

Arithmetic coding can approach this optimal codelength

[3]. But P (xijxi�1; � � � ; x1), 1 < i � n, is generally un-
known in practice, and has to be estimated on the 
y
based on past observations in the coding process. In uni-
versal source coding literature a mechanism of estimating
P (xijxi�1; � � � ; x1) is often called a statistical model of the
source. The set of past observations on which the probabil-
ity of the current symbol is conditioned is called modeling
context. Clearly, it is the model that determines the rate
at which we can encode the symbol sequence. But (1) does
not necessarily mean that higher-order modeling context
leads to shorter codelength. The number of possible con-
ditioning states grows exponentially with the order of the
context. Since conditional probabilities P (xijxi+1; � � � ; x1)
have to be estimated on the 
y by corresponding symbol his-
tograms in di�erent conditioning states, an image may not
provide su�cient samples for the convergence of too many
symbol histograms to P (xijxi�1; � � � ; x1). In other words,
too large a modeling context spreads counting statistics too
thin among all possible modeling states to reach good con-
ditional probability estimates. The codelength will actu-
ally increase when the order of modeling contexts gets too
high despite the fact that conditional entropy is monoton-
ically non-increasing in the order of context modeling, i.e.,
H(xijxi�1; � � � ; xi�k�1) � H(xijxi�1; � � � ; xi�k). Thus high
order of context modeling is more than a problem of high
time and space complexities, it can reduce coding e�ciency
as well. This problem is commonly known as \context dilu-
tion" and formulated by Rissanen analytically as so-called
\model cost" [2]. Intuitively speaking, the better the model
�ts the source, the shorter the codelength an adaptive en-
tropy coder can achieve. But in universal source coding
in which no prior knowledge of the source is available, the
model itself must be either explicitly sent to the decoder or
\learned" on the 
y from the symbol stream. In the former
case, we need to add side information to the total descrip-
tion length of the source. In the latter case, the learning
takes time to �t a statistical model to the source. The
higher the model complexity (i.e., the more model parame-
ters), the longer the time to \learn" the model. Before the
model converges to the underlying statistics through on-line
learning, entropy coding cannot reach the minimum code-
length of (1). In either case, the context model has a cost
to the total description length. The pivotal issue of this re-
search is to �nd modeling contexts that capture statistical
dependency between EZW symbols from �2 and �3 but at
a small model cost.

3. SYMBOL BINARIZATION FOR ENTROPY

CODING

The EZW symbols can take on four or three possible let-
ters depending on if they are drawn from �2 or �3. But
letters P and N are equally probable because most wavelet
coders are based on least-squares approximation criterion.
Having this preknowledge, context modeling can reveal no
unknown structures of the source by distinguishing P and
N to the bene�t of compression. On the contrary, it leads
to poorer coding e�ciency by increasing the model cost (the
number of conditioning states) for nothing in return. Thus
we combine P and N into one case called signi�cant (de-
noted by letter S) to reduce the model cost and improve



coding e�ciency. In this work we reduce original alphabets
�2 = fZR; IZ;P;Ng and �3 = fZ;P;Ng to a binary al-
phabet � = fZ;Sg. The use of binary alphabet � in both
cases of �2 and �3 facilitates binary adaptive arithmetic
coding which is computationally very e�cient. If the cur-
rent EZW symbol x is S (either P or N), one more bit is
used to tell apart P and N . It is pointless to entropy code
this bit because P and N are equally probable. Similarly,
if x = Z and x 2 �2 another bit is required to distinguish
between ZR and IZ. In the latter case, we do entropy code
this additional bit because the probabilities of ZR and IZ

can di�er signi�cantly in di�erent modeling states.

Given an EZW symbol x, consider a modeling context
that involves seven EZW symbols related to x in the spa-
tial domain: p, w, n, nw, ne, ww, and nn, where p is the
parent of x, w, n, nw, ne, ww denote the EZW symbols
located to the west, north, northwest, northeast, west-west,
and north-north of x. Note that p, w, n, nw, ne, ww,
and nn are processed prior to x in the scan order given by
[5], hence they are available to both encoder and decoder.
Clearly, to utilize the symbol dependency, we should restrict
w, n, nw, ne, ww, and nn to be in the same subband as
x. If x is at or near the boundary of its band, we simply
duplicate the boundary symbols. The three most related
symbols to x are p, n and w. First, we set three modeling
bits bp, bw , and bn to 1 or 0 depending on whether p is
signi�cant, whether w just becomes signi�cant in the cur-
rent dominant pass, and whether n just becomes signi�cant
in the current dominant pass. Based on the three mod-
eling bits the context modeler estimates eight conditional
probabilities P (xjbpbwbn) for bpbwbn = 000; � � � ; 111. In our
experiments, adaptive binary arithmetic coder that uses the
estimated P (xjbpbwbn) achieved slightly shorter codelength
than the original Shapiro's result on test image \lena" [5].
In order to exploit higher order symbol dependency in adap-
tive entropy coding, we consider more neighbors of x in
addition to w and n. Apparent candidates for additional
modeling events are nw, ne, ww, and nn. An attempting
next step toward higher compression is to increase the order
of context modeling to include all these modeling events.
But in our experiments, the use of an additional model-
ing event reduced the codelength by a very small amount.
The inclusion of more than four modeling events into the
model context actually increased the codelength. This ob-
servation manifested the negative impact of model cost on
the codelength. Without care the model cost starts to can-
cel possible compression gains brought by context modeling
even when the order of the modeling exceeds three. In order
to turn higher-order statistical redundancy into real com-
pression gains we have to �nd ways of reducing the model
cost.

4. QUANTIZATION OF MODELING EVENTS

A useful technique to reduce model cost is quantization of
modeling events [7]. In fact, we have already e�ected a bi-
nary quantization of modeling events when forming bw and
bn above. This can be easily seen by noting that bw and
bn are set based on if the EZW coe�cients at locations of
w and n exceed the current but below the previous quanti-
zation threshold in successive dominant passes of the EZW

algorithm, and by noting that the quantization threshold
is lowered by half in the successive dominant passes. The
distribution of random variable x depends on the continu-
ous magnitudes of its neighboring EZW coe�cients. But
we have to quantize the EZW coe�cients when forming
the model contexts otherwise the model cost (the number
of conditioning states) would be far too high. Likewise,
it is necessary to quantize other EZW coe�cients involved
in context modeling. We set bnw, bne, bww and bnn to 1
if the EZW coe�cients at the corresponding locations are
signi�cant up to the current dominant pass, otherwise to 0.
Furthermore, we set b0w and b0n to 1 if the EZW coe�cients
at w and n were found to be signi�cant in a previous dom-
inant pass. The modeling events b0w and b0n together with
bw and bn can capture statistical redundancy between suc-
cessive dominant passes of the EZW algorithm. Note that
b0w and bw in combination will provide a �ner quantization
of the EZW coe�cient at w, and so will b0n and bn.
In the above we have created six more binary modeling

events bnw, bne, bww , bnn, b
0
w and b0n. Without further con-

text quantization, adding those binary modeling events will
increase the number of conditioning states by 26 = 64 times.
We need to reduce this number drastically. To this end, we
combine the six binary modeling events into two b1 and b2:
b1 = 0 if b0w + b0n + bnw + bww = 0 and b1 = 1 otherwise;
b2 = 0 if b0w+ b0n+ bne+ bnn = 0 and b2 = 1 otherwise. This
represents a vector quantization of six-dimensional binary
random vectors into four codewords. Even with this rather
aggressive context quantization scheme, we still found that
adaptive entropy coding by estimating P (xjbpbwbnb1b2) on
the 
y gave slightly longer codelength than by estimating
P (xjbpbwbnb1) or P (xjbpbwbnb2), whereas adaptive entropy
coding driven by estimated P (xjbpbwbnb1) or P (xjbpbwbnb2)
outperforms that by estimated P (xjbpbwbn). The dropping
coding e�ciency from four to binary �ve modeling events
indicated a critical point at which the model cost gets high
enough to render higher order context modeling counter-
productive.

5. WEIGHTED PROBABILITY ESTIMATION

IN MULTIPLE CONTEXTS

Since adaptive entropy coding bene�ts from esti-
mated P (xjbpbwbnb1) or P (xjbpbwbnb2) but not from
P (xjbpbwbnb1b2), an interesting question is if we can make
use of both b1 and b2 together with bp, bw , and bn without
increasing the model cost and get a shorter codelength? The
answer is yes. Instead of forming a modeling context by the
Cartesian product of �ve binary modeling events, we create
two modeling contexts: C1 = bpbwbnb1 and C2 = bpbwbnb2.
Let p(xjc1) and p(xjc2) be estimated conditional probabil-
ities pXjC1

(xjc1) and pXjC2
(xjc2) at any given moment of

adaptive entropy coding, and l(c1) and l(c2) be the average
codelengths of past symbols in the modeling contexts c1 and
c2. We assign to the current EZW symbol x the weighted
probability

p(xjc1 [ c2) =
2l(c1)p(xjc1) + 2l(c2)p(xjc2)

2l(c1) + 2l(c2)
(2)

in adaptive arithmetic coding of x. Since p(xjc1) and p(xjc2)
are probability measures on x given c1 and c2, p(xjc1 [ c2)



Algorithms Bit Rates
0.125 0.15 0.25 0.5

This Work 31.16 31.96 34.25 37.19

Shapiro (EZW) 30.23 33.17 36.28

Said,Pearlman 31.1 31.9 34.1 37.2

Table 1. Coding results for `lena'

that is a weighted sum of p(xjc1) and p(xjc2) is also a proba-
bility measure on x. Our experiments showed that adaptive
arithmetic coding of x based on p(xjc1 [ c2) improved the
coding e�ciency by about 3% over that on p(xjc1) or on
p(xjc2) alone. The key idea here is to let p(xjc1 [ c2) have
contributions of both modeling events b1 and b2 but with-
out increasing the model cost. We only compute p(xjc1)
and p(xjc2) in modeling contexts of four rather than �ve
binary events. Probability estimates p(xjc1) and p(xjc2)
are sample histograms, and each past observation is used
to update both p(xjc1) and p(xjc2). In this way each sam-
ple is counted twice in computing p(xjc1 [ c2), whereas it
could only be counted once in estimating P (xjbpbwbnb1b2).
This technique e�ectively increases the number of samples
used by probability estimation, thus it alleviates the prob-
lem of context dilution which is caused by inclusion of both
b1 and b2 in context modeling.

6. PERFORMANCE COMPARISON

The PSNR numbers for the proposed adaptive entropy cod-
ing method coupled with the EZW algorithm at various bit
rates on test image \lena" are listed in Table 1. For compar-
ison purposes, we also include in the table the performance
�gures on the same test image of the EZW algorithm and
the recent Said and Pearlman's method (its arithmetic cod-
ing version). Our method signi�cantly outperformed the
original EZW algorithm at all bit rates, and it fared slightly
better than Said and Pearlman's method for bit rates 0.25
and below. The latter is generally considered as the current
performance leader.
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