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ABSTRACT

A method for coding a source modeled by an in�nite Gaus-
sian mixture distribution is proposed. The source is �rst
split into N classes. The samples of each class are then
quantized by an in�nite-level uniform threshold quantizer
followed by an entropy coder designed for each class. The
problem of joint optimization of this system's rate distortion
performance is �rst solved theoretically, assuming an expo-
nential mixing density. A comparison to a system optimal
for high rates, using one common quantizer for all classes,
showed that for a �xed distortion the rate was reduced by
11{12% at low rates for a �xed N = 5. A subband image
coder, using the optimum theoretical parameter values was
simulated. The resulting coder has high performance and
low complexity.

1 INTRODUCTION

In recent years subband coding has become popular for im-
age compression. The main idea behind subband coding is
�rst to decompose the image by a �lter bank, followed by
quantization of the subband signals and possibly entropy
coding of the resulting quantization indexes. It was shown
in [1] that for a uniform 16 band decomposition scheme,
there was negligible interband correlation and except for
the lowest frequency subband, the intraband correlation was
small. Thus, DPCM is commonly used to code the lowest
frequency band [2, 3], while zero-memory scalar or vector
quantization have usually been applied to code the higher
subbands [1, 2, 4].
However, inspection of the subbands reveals that most

of the energy is concentrated in areas which corresponds
to edge activity in the original image. Some of the ap-
proaches which exist to exploit the local characteristics of
the imagery are spatially adapting �lter banks [5], spatially
adaptive quantization [2, 6], and the zerotree algorithm [7].
Another approach is based on adaptive classi�cation of the
subbands followed by class-wise entropy constrained cod-
ing [8, 9, 10, 11].
This work belongs to the latter class of approaches. In

contrast to [9, 10, 11], where the classi�cation and coding
processes are optimized separately, we propose a method for
joint optimization of these tasks. In addition, the proposed
method does not employ high rate approximations to �nd
the optimal classi�cation scheme like in [8, 9, 10, 11].
In this paper, we provide a mathematical formulation, so-

lution, and analysis of the joint problem of optimal classi�-
cation, uniform threshold quantization (UTQ), and entropy
coding based on a Gaussian mixture distribution model of
the subband signal statistics. UTQ has proved to perform
very close to the optimal entropy constrained quantizers for
a wide class of memoryless sources, and within 0:3 bits per
sample from the rate-distortion lower bound at all rates [12].
This paper is organized as follows: An in�nite mixture

distribution source model is introduced in Section 2. Then
in Section 3, a system for coding this source is given and
the coder optimization problem is stated. In Section 4,
the solution of this problem is found. A subband image
coder employing the theoretical parameters is simulated in
Section 5.

2 SOURCE MODEL

Consider designing a subband image coder. First, we need
an appropriate model for the subband signal statistics.
In [13] it was shown that a suitable statistical model for
the subband signals is a memoryless in�nite Gaussian mix-
ture distribution. Furthermore, an exponential mixing den-
sity was shown to be a reasonable model for the variance
statistics. Hence, the following two-dimensional probabil-
ity density function (pdf) is introduced to characterize the
subband signal statistics:
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where X and �2 are the stochastic variables for the ampli-
tude and the variance of the subband signals, respectively,
and x and �2 are the corresponding parameters. The mixing
density, p�2(�

2), is exponential with parameter �, and the
component density, pXj�2(xj�2), is Gaussian � N (0; �2).

It can be shown that E[X2] = 1=�.

3 PROBLEM FORMULATION

The source which was introduced in Section 2 is composed of
an in�nite number of Gaussian distributions. To minimize
the coder mismatch when coding these densities, sources
with approximately the same statistics are coded with the
same coder.
The multiple entropy coder system shown in Figure 1

is used to code the subband signals. The subband sig-
nal, X, is �rst classi�ed into N classes according to its
variance1 , such that the samples with variance in the in-
terval: [�2i ; �

2
i+1); i 2 f0; 1; : : : ;N � 1g, belong to class i.

The samples belonging to class i 2 f0; 1; : : : ;N � 1g, are
then quantized by a mid-tread UTQ, Qi(�), with quantizer
step size �i, and �nally, the quantizer indexes are coded by
an entropy coder, Ei(�), matched to the class statistics.
Ideal entropy coders are assumed. This is not an unreal-

istic assumption since there exist arithmetic coders which
perform very close to the �rst order entropy of memoryless
sources [14].

1In practice, the variance is estimated by computing the mean
square value of blocks of subband samples, whereby each block
is classi�ed according to its variance estimate.
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Figure 1. Multiple entropy coder system based on
classi�cation and uniform threshold quantization.

Let HN be the �rst order overall average entropy of the
multiple entropy coder system after quantization, and DN

the corresponding mean square error (MSE) distortion us-
ing N quantizers.
Thus, the coding problem for the system in Figure 1 can

be formulated as follows:

minimize HN (�
2
1 ; �

2
2; : : : �

2
N�1;�0;�1; : : : ;�N�1);

subject to (2)

DN (�
2
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2
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2
N�1;�0;�1; : : : ;�N�1) = Dc;

where �20 = 0, �2N = 1, and Dc is the target distortion.
The optimum performance is found by solving the problem
in Equation 2 jointly for the optimal quantizer step sizes,
�i, and the variance decision levels, �2i .
The overall average entropy is found as the expected en-

tropy of the N classes, and is given by:

HN =
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where Ri(�
2) is the rate of the output of quantizer Qi(�)

with an input pdf pXj�2 (xj�2), and is given by:
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Quantization of the in�nite Gaussian mixture distribution
with the system shown in Figure 1, gives a MSE distortion,
DN , given by:

DN =

N�1X
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where rk;i is the kth representation level, and is chosen as
the centroid of the pdf of class i, pi(x). Hence, rk;i is given
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Figure 2. Top: Optimal variance decision levels (�2i )
as a function of the normalized MSE distortion.
Bottom: Optimal quantizer step sizes (�i) as a func-
tion of the normalized MSE distortion. In both �g-
ures the number of entropy coders equals N = 4.
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and pi(x) by:
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4 THEORETICAL SOLUTION

The problem stated in Equation (2) was solved by an iter-
ative numerical algorithm. The optimal variance decision
levels, �2i , for N = 4 are given in Figure 2 (top), and the
corresponding optimal quantizer step sizes, �i, are shown
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Figure 3. Theoretical rate distortion performance.
N = 1 (||), N = 2 (� � � � � � ), N = 3 ({ �{ �{), N = 4 ({
{ {), and N = 5 (||) entropy coders.

in Figure 2 (bottom). The results show that �i � �i+1

for a constant distortion. Thus, samples in classes with a
large variance should be quantized with a higher resolution
than samples with a lower variance. From the �gure, notice
that the quantizer step sizes are approximately equal for all
quantizers at low distortions. This is in accordance with
the theoretical proof given in [15].
Figure 3 displays the theoretical rate distortion perfor-

mance of the system using N = 1, 2, 3, 4, or 5 entropy
coders. A substantial rate improvement is obtained by us-
ing multiple entropy coders. For example at a normalized
MSE distortion of 0.0012, a bit rate reduction of 0.27 bits
per sample is experienced by using �ve entropy coders in-
stead of only one.

4.1 Theoretical comparison with one quantizer

In [15] a similar theoretical model was investigated, where
the optimization problem was solved using a high rate ap-
proximation, i.e. one common uniform threshold quantizer
was used for all classes. It was proved that this was op-
timal for high rates. Table 1 shows the di�erence of the
rate distortion performance of the reference system and the
proposed system.

Normalized distortion �Dc

Number of 0.0004 0.04 0.4 0.7 0.9
quantizers Rate (bits/sample)

1 3.86 2.22 0.55 0.17 0.037
5 3.86 2.18 0.51 0.15 0.033

Table 1. Rate distortion performance of the systems
when using one common quantizer and �ve di�erent
quantizers. N = 5 classes are used in all results.

From Table 1, it is clear that for very low rates the rate
is reduced by 11{12% for a �xed distortion D by allowing
di�erent quantizers for each class. For high rates there is
nothing to gain by using di�erent quantizers in each class.

5 SUBBAND IMAGE CODER

5.1 Implementation of the subband coder

The theoretical results were adopted in a subband image
coder. The images were �rst decomposed by a parallel 8�8

2A normalized distortion of 0.001 is equivalent to a signal-to-
noise ratio (SNR) of 10 � log10((1=�)=Dc) = 30 dB.
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Figure 4. Simulation results. Image: Luminance
component of Lenna. N = 1 (||), N = 2 (� � � � � � ),
N = 3 ({ �{ �{), N = 4 ({ { {), and N = 5 (||)
entropy coders.

FIR �lter bank, jointly optimized to maximize the coding
gain and to minimize ringing and blocking artifacts [16].
The lowest frequency subband was coded by a �xed rate
DPCM coder using 6 bits per sample. All the other fre-
quency bands were coded by the method described in Sec-
tion 3. The variance estimates were found by computing
the mean square value of 4 � 4 blocks. Each block was
classi�ed according to the optimal variance decision levels,
�2i ; i 2 f0; 1; : : : ;Ng and applied to a quantizer with step
size �i. Finally, the quantizer indexes were coded class-wise
in arithmetic coders optimized for the class statistics. The
classi�cation information, telling the decoder which class
each block belongs to, was sent as side information. All
the necessary side information was included in the simula-
tion results. The variance decision levels and quantizer step
sizes were scaled according to the total variance and total
standard deviation of the image, respectively.
Figure 4 shows the performance of the practical image

coder using N = 1, 2, 3, 4, and 5 classes for coding the
512�512 luminance component of Lenna. The performance
di�erence by using di�erent numbers of entropy coders is
approximately equal to the theoretical results, however, the
main di�erence is that in the practical image coder the side
information has to be accounted for. When the number of
classes increases, the rate distortion performance increases
up to a certain point. Beyond this point the performance
decreases when the number of classes are increased further.
In Figure 4 the performance is higher by using four entropy
coders than �ve entropy coders.
In the theoretical formulation, the side information was

not accounted for. Furthermore, it is emphasized the statis-
tical model given in Section 2 is not perfect, and especially
the exponential mixing density assumption is not entirely
correct. It is clear from the results that the proposed classi-
�cation scheme gives a signi�cant improvement of the image
coder system. The rate is reduced by 15{20% for a �xed
PSNR by using four classes instead of one.

5.2 Comparison with one quantizer

Figure 5 shows a comparison between an image coder using
one common quantizer and a coder which uses four quan-
tizers.
With one entropy coder the two systems are identical.

With more than one entropy coder the systems have di�er-
ent performance. In Figure 5, four entropy coders are used.
From the �gure it is seen at a bit rate of 1:4 bits/pixel
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Figure 5. Simulated results using one quantizer ({ {
{) and one quantizer for each class (||). In each
case N = 4 classes are used.

approximately 0:1 dB is gained by allowing di�erent quan-
tizers for each class instead of using one common quantizer.
At low and high rates the absolute PSNR gain is lower.
This is in accordance with the theoretical results found in
Section 4.1.

5.3 Comparison with JPEG

Figure 6 shows the rate distortion performance of the pro-
posed image coder compared with JPEG [17].
Figure 6 shows that the proposed image coder performs

better than the JPEG coder. At 1:4 bits/pixel the proposed
image coder has 2.0 dB higher PSNR than the JPEG coder,
for the image Lenna.

6 CONCLUSIONS

A method which jointly optimizes the classi�cation, quanti-
zation, and entropy coding of an in�nite Gaussian mixture
distribution source was developed. No high rate approxi-
mations have been used.
The theoretical results showed that by allowing di�erent

quantizers in each class a rate reduction of 11{12% was
obtained at low rates using �ve entropy coders. At high
rates there was no gain by using di�erent quantizers in each
class. This is in accordance with [15].
The proposed coding method gives a good rate distortion

performance at a low complexity.
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