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ABSTRACT

A new compression algorithm for �ngerprint images is in-

troduced. Using Lattice Vector Quantization (LVQ), a tech-

nique for determining the largest radius of the Lattice and

its scaling factor is presented. The design is based on

obtaining the smallest possible Expected Total Distortion
(ETD) measure, using a given bit budget, while using the

smallest codebook size. In the proposed Piecewise-Uniform

Pyramid LVQ, the wedge problem encountered with the

Pyramidal Lattice point shells is resolved. At very low bit

rates, for the coe�cients with high-frequency content, the

Positive-Negative Mean (PNM) method is proposed to im-

prove the resolution of the reconstructed image. The pro-

posed algorithm results in a high compression ratio and a

high reconstructed image quality with a low computational

load compared to other existing algorithms.

1. INTRODUCTION

Fingerprints have been used as unique identi�ers of individ-

uals for a very long time. The increasing amount of �nger-

prints collected today by government agencies (such as the

Police) has created an enormous problem in transmission,

storage, and automated analysis. Although there are many

image compression techniques currently available, there still

exists a need to develop faster and robust data compression

algorithms adapted to �ngerprints using emerging signal

analysis techniques.

Since �ngerprint ridges are not necessarily continuous

across the impression due to minutiae (ridges endings and
bifurcations), the information used for matching one �n-

gerprint to another resides in these �ne details and their

relationships. Consequently, the details have to be retained

in comp/decomp algorithms. In order to achieve a high com-

pression ratio while retaining these �ne details, the Wavelet
Packet Transform (WPT) associated with a proposed �xed

decomposition structure tailored to �ngerprint images is

considered.

Quantization is the mapping of a large set of possible

inputs into a smaller set of possible outputs, which can be

implemented in either scalar or vector versions. Shannon

showed that block coding of a discrete memoryless source

asymptotically approaches the performance promised by

the rate distortion function for a given source. Later, Zador

proved that Vector Quantization (VQ) can yield even a

smaller average Mean Square Error (MSE), per dimension,

than scalar quantization. Furthermore, Gersho conjectured

that LVQ is an optimal high-resolution entropy-constrained

vector quantizer.

However, LVQ is a multidimensional generalization of

uniform quantizers which produces minimum distortion for

an input with Uniform distribution. Unfortunately, the dis-

tribution of the WT coe�cients of natural images is found

to approximate the generalized Gaussian law. In order to

be able to take advantages of LVQ's properties and its fast

implementation, while considering the i.i.d. Non-Uniform

distribution of input sources, a piecewise-uniform compand-

ing approach to the LVQ is proposed in this paper. The

proposed algorithm quantizes almost all of the source vec-

tors without being projected to the outermost sell of the

Lattice, while it properly maintains the smallest possible

codebook size. It also overcomes the wedge-region prob-

lem, encountered with Pyramidal shape LVQ, which are

two major drawbacks of the PLVQ algorithm proposed by

Barlaud [?]. The proposed algorithm can also handle all

kinds of Lattices, not only cubic Lattices, as opposed to

the algorithms in [?] and [?]. In the proposed algorithm,

no predetermined assumption on the values of the Lattice

parameters is made and no training and multi-quantizing

is required, as opposed to [?]. A method for determin-

ing the largest Lattice radius (while using the smallest ap-

propriate codebook size) is presented. For each subimage,

the concentric Lattices are truncated and scaled in order

to achieve the best rate-distortion function, adapted to the

Probability Density Function (PDF) of that subimage. At

very low bit rates, for the coe�cients with high-frequency

content, the PNM method is proposed to improve the qual-

ity of the reconstructed image. Additionally, for the fourth

WT level, for the coe�cients with low-frequency content, a

lossless predictive compression scheme is used. The overall

algorithm results in a high compression ratio and a high

reconstructed image quality with a low computational cost

compared to other existing algorithms. The performance of

the proposed algorithm is compared to that of other com-

pression techniques.

2. WAVELET TRANSFORM DECOMPOSITION

Due to the particular nature of �ngerprints and the neces-

sity of retaining ridge details, the WT is considered in this

work. The Wavelet decomposition is a powerful tool in im-

age coding because of: its decorrelating e�ects on image

pixels, the concentration of energy in a few coe�cients, its

multiresolution framework, and its 
exible frequency split-



ting [?]. The resulting individual components can hence

be processed using di�erent algorithms adding 
exibility to

the coding process to obtain near optimal results in com-

pression.

In WT �elds, \Wavelet Packets" are functions that give
rise to an orthonormal basis which can be used to improve

the time-frequency localisation of signals. Here, the WPT

associated with a special subband decomposition structure,

tailored to �ngerprints, is applied to the mean-removed

input source image. The \essential" coe�cients of each

subimage are normalized to have zero mean and unit vari-
ance; this leads to PDFs with narrower main lobe. As a re-

sult, the quantization procedure becomes more manageable,

requiring less bits and a smaller Lattice codebook size. The

coe�cients within each column in the subimages, are se-

lected from non-neighbouring pixels. Experiments showed

that with these vectors, the best LVQ result is obtained.

The bit allocation and the corresponding distortion of each

subimage is determined, taking into account properties of

the Human Visual System (HVS) and the normalized i.i.d.

of generalized Gaussian law [?], [?]. For more details on

wavelet decomposition structure, wavelet family selection,

main coe�cients selection, optimal bit allocation, and vec-

tor composition, see [?] and [?].

3. PLVQ AND PREVIOUS WORK

Quantization is the mapping of a large set of possible in-

puts into a smaller set of possible outputs. To avoid using

the well-known LBG method, which is computationally ex-

pensive and results in blur artifacts at low bit rates, we use

the Lattice algorithm. The codebook size jcj = 2nR, for

n-D vectors with R bpp, is not achievable using LBG, but

is easily achievable using LVQ.

A Lattice �n in <n, which is a multidimensional gereral-

ization of uniform quantization, is composed of all integral

combinations of a set of linearly independent vectors that

span the space. Conway and Sloane determined the best

known Lattices for several dimensions, as well as fast quan-

tization and indexing algorithms [?], [?]. Using their fast

algorithms, one does not need to design and transmit the

codebook.

Two critically important issues with LVQ concern the

truncation and scaling of the Lattice. A truncation region

is the subset of the Lattice that will actually be coded. For

each cell in the region of support, the reproduction vector

is taken to be either the midpoint of the cell, or the cen-

troid of the training vector lying in that cell. The optimal

encoder, for a given codebook Y selects the vector Yi if:

d(X;Yi) � d(X;Yj), for all j. The optimal encoder, thus,

operates on a nearest-neighbour or minimum-distortion ba-

sis. Using WT, and hence having i.i.d. gereralized Gaussian

source vectors, the Lattice point shells will have a Pyrami-

dal shape [?]. By truncation, the largest pyramid radius, r,

is chosen to determine the number of concentric pyramidal

shells of Lattice points within the pyramidal volume and,

hence, the codebook size jcj. The choice of support region

can have an important e�ect on the encoding speed and

quality. Since the structure of the Lattice points is always

the same for a particular LVQ, regardless of the input to the

quantizer, the Voronoi cell of every element in the region

has, therefore, an identical shape and size. As a result, it is

also desirable to scale the Lattice. By scaling, the density

of Lattice points can be changed and the ETD, can hence

be minimized. For the scaled Lattice, a scaling factor s < 1,

squeezes the Lattice, increases the density of Lattice points,

and reduces the distortion. However, the volume enclosed

by the truncated surface and the probability that a source

vector falls within that region decreases. An n-D vector will

fall into a truncated (by r-radius) and scaled (by s) Lattice,

if its `1-norm is less than a predetermined value Emax:
nX
i=1

jxij � Emax = sr: (1)

With the pyramidal Lattice points, the wedge problem

arises when the input vectors, falling into each wedge region,

are all projected to Lattice points with at least one coordi-

nate being zero. These vectors will be reconstructed with 1

to n� 1 degrees of freedom and as n increases, the number

of wedge regions increases too. Since wedge regions con-

tain high-energy edge information, the wedge problem has

an obvious distortion e�ect, blurness, on the reconstructed

image.

One of the best image compression techniques based

on LVQ was proposed by Barlaud et al. [?], however the

technique had two major drawbacks. The entropy mea-

sure used, is not achievable because the codebook size can

be orders of magnitude greater than the number of quan-

tizer source vectors. Furthermore, their algorithm does not

consider the wedge region problem encountered with pyra-

midal shells. To overcome these di�culties, in [?], a con-

centric double-density PLVQ was discussed in which three

preassumptions are made. Additionally, training and multi-

quantizing procedures still need to be performed. In [?],

with the lack of the relation between the radius of the pyra-

mid and the codebook size (the relation was later intro-

duced in [?]), the vectors on the outermost shell are con-

sidered as codewords. This algorithm which covers just cu-

bic Lattices, uses constant PDFs in di�erent regions which

makes the restriction of having only a small probability of

containing input vectors within each region. Using several-

density Lattice regions, the algorithm ends up with exper-

imentally determined values for the two main parameters

(scale factor ratio, s, and scale factor, c0), using Monte
Carlo simulations.

4. PROPOSED PIECEWISE-UNIFORM PLVQ

ALGORITHM

In the proposed algorithm, the WPT associated with the 73-

subband decomposition structure proposed in [?], is applied

to the mean-removed input source image. Having the WPT

coe�cients, a \hard thresholding" scheme is applied where

the part of coe�cients having energy less than a predeter-

mined threshold level are set to zero. For each subimage,

the source vectors (with mean-removed normalized PDF),

the allocated bit budget Rm;d, and its corresponding dis-

tortion Dm;d, are obtained.

In the proposed Piecewise-Uniform PLVQ algorithm,

three Lattice densities are considered which are separated

by two surfaces of constant probabilities. For any arbitrary

PDF, the corresponding density of Lattice points is propor-

tional to its PDF. Having a highly Non-Uniform and sharp



PDF, the inner most Lattice is considered to be the densest

and the outer most Lattice is empty. The second Lattice

with sparse density s2, is designed to cover the less proba-

ble high-energy vectors which might fall into wedge regions.

Consequently, the edge details will be quantized properly.

Note that using a truncated sparse Lattice will not cost the

codebook size to increase signi�cantly. The ETD is de�ned

as:

ETD = `Dm;d = ��(P1s
2

1 + P2s
2

2); (2)

where ` is a variable with `� 1, Pi is the probability of the

input vectors lying within the i-th Lattice, si is the scaling

factor and �� is the upper MSE bound [?].

The vectors of the third Lattice are projected to the out-

ermost shell of the second Lattice r2, and the third Lattice

becomes empty, then:

P2 = 1� P1: (3)

The ratio of scaling factors is:

k =
s1

s2
; (4)

where k < 1. Using (3) and (4) in (2), we get:

s1 =

r
k2`Dm;d

��(P1(k2 � 1) + 1)
: (5)

The total codebook size becomes:

jcj = �(r1) + [�(r2)� �(
s1

s2
r1)]; (6)

where the truncation levels are de�ned as:

r1 =
Emax1

s1
; r2 =

kEmax2

s1
: (7)

The total bit requirement will be:

R = P1R1 + P2R2 bpp

or:

R = P1
log2(�(r1))

nm;d
+ (1� P1)

log2(�(r2)� �(
s1
s2
r1))

nm;d
:(8)

Where Ri and nm;d, are the bit requirement for the i-th

concentric Lattice and the dimension of the Lattices in the

(m,d)-th subimage respectively. The computation of the

truncation level and scaling factor of Lattices is based on

obtaining the smallest possible ETD, using a given bit bud-

get. The proposed algorithm starts with the best possible

condition under which all of the input vectors are contained

inside two Lattices which have the smallest possible scaling

factors. The condition will then be examined using (8).

If R � Rm;d the condition is met. If the bit budget can

not a�ord such a bit rate, �rst the k increases leading to a

smaller di�erence between to scales. If this is not enough,

the Emax1 increases leading to higher scaling factors. If the

bit budget can not a�ord the desired ETD, by decreasing

the Emax2 , the algorithm allows a small number of vectors

to be projected on the outermost shell of the second Lat-

tice r2, and examines that. In this situation, since we have

imposed the Lattices to be as dense as possible, the ETD

will have the smallest possible value. If the current condi-

tion can not be met, the algorithm goes for a slightly higher

ETD measure, and the iteration continues.

The experimental results showed that with `� 1 which

leads to a small codebook size (requiring less bits), the pro-

posed algorithm always computes the truncation level and

scaling factor which lead to a small ETD measure. In each

iteration, if the value of the k or Emax1 tends to an unrea-

sonable bit rate requirement or if the reduction of k tends

to a higher bit rate requirement, the algorithm does not

continue the loop and goes to check the next condition.

As explained above, no predetermined assumptions about

the variables are made and there is no need to go through

training and multi-quantizing procedures. Since the range

of the desired values of the variables is very small, and the

algorithm converges in few iterations only, the procedure is

fast.

The D4-PLVQ is applied to all subimages, except for

the diagonal subimage of the �rst level and the vertical and

low-passed subimages of the fourth level. The input vec-

tors are scaled and quantized using any of the three regions

based on their energy measures. The corresponding region-

code and the few projected values are saved for usage in

dequantization.

The �rst level's diagonal subimage, is usually discarded

which causes some blurness in the reconstructed image. In

this work, after selecting the \essential" data, a binary im-

age containing the mean of the positive and negative data

is generated. Doing so, the algorithm will be simpli�ed

(no need of quantization and indexing part) while the qual-

ity of the reconstructed image is better preserved. For the

other subimages (mostly contained in the �rst WT level),

if the allocated bit rate Rm;d is very small, the truncated

level tends to be zero. In this case, all of the coe�cients

should be quantized to the Lattice centre which is a zero

vector. This means that the high frequencies are going to

be set to zero, which will have a blurring a�ect on the re-

constructed image. To avoid this situation, the algorithm

�rstly checks the given bit rate and computes its available

codebook size, using jcj = 2nm;dRm;d . Referring to the

corresponding � function, if this codebook size tends to a

zero Lattice radius, then the algorithm automatically im-

plements the PNM method. The other situation where the

PNM method is automatically chosen, is when (due to a

very low bit rate) the scaled vectors are mostly going to be

quantized to zero. Hence, the high-frequency content will

still be e�ciently used in dequantization. The Lattice code-

books are then indexed, using the fast encoding method [?]

and entropy encoded.

The average information of the codebook is:

<m;d = P1<1;m;d + (1� P1)<2;m;d; (9)

where for each Lattice <i;m;d is obtained using:

<i;m;d = �
1

nm;d

LiX
j=1

p(vi;j)log2p(vi;j); (10)

where p(vi;j) is the probability of selecting the n-D index

vector vi;j, belonging to the obtained indices at level m and

corresponding to the orientation d, during the coding of the

i-th Lattice of that subimage. The total estimated entropy,

<T , is computed as:

<T =

PM

m=1

P
3

d=1
<m;dnm;dym;d

n2T
bpp; (11)



where M is the depth of WT, and nm;d and ym;d are the

lengths of the codewords for each n� y subimage, and n2T
is the size of the original image.

5. PRELIMINARY RESULTS

Using a 512 � 512 �ngerprint image, the performance of

the proposed algorithm was examined. The results of using

di�erent compression ratios are given in Fig. 1. Table 1

shows the obtained PSNRs using JPEG, the FBI's �nger-

print coder (WSQ) [?] and the proposed PU-PLVQ algo-

rithm. To show the performance of the proposed algorithm

using other images, the popular \Lena" image, 512 � 512,

was encoded. Fig. 2, shows the e�ciency of the proposed

algorithm compared to the JPEG. Using this image, the

PSNRs obtained from JPEG, Barlaud's [?], and the pro-

posed PU-PLVQ algorithm for 0.17 bpp where 29.4 dB,

30.3 dB, 36.84 dB respectively. The initial results using

the proposed algorithm are satisfactory, both in terms of

quality and computational load.
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Figure 1: (a) Original Image, 8 bpp; (b) reconstructed, bpp

= 0.15, PSNR = 29.82 dB.

<T (bpp) JPEG WSQ Proposed

0.65 30.75 31.71 38.17

0.45 28.82 29.91 35.74

0.15 20.15 25.18 29.82

Table 1: PSNRs for �ngerprint image.
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Figure 2: Performance of the proposed algorithm, using

\Lena" image.

6. CONCLUSION

A new compression algorithm for Fingerprint images is in-

troduced. A modi�ed wavelet packet scheme which uses a

�xed decomposition structure, designed for �ngerprint im-

ages, was used. A new design method for computing the

truncation level and the scaling factor of Lattices in order

to obtain the smallest possible ETD, while using the small-

est appropriate codebook size is presented. In the proposed

Piecewise-Uniform PLVQ, the wedge problem encountered

with the Pyramidal Lattice point shells is resolved. At very

low bit rates, for the coe�cients with high-frequency con-

tent, the PNM method was proposed which improved the

quality of the reconstructed image. In addition to the pro-

posed algorithm, the performance of other techniques was

also discussed with results showing that the proposed tech-

nique outperforms JPEG and the FBI's WSQ algorithm for

�ngerprints.


