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ABSTRACT

In this paper cluster validation criteria for piecewise con-
stant image segmentation are proposed. All the criteria are
based on the maximum a posteriori (MAP) principle and
derived and implemented by four di�erent, but related ap-
proaches. They are obtained by using Taylor expansions
and three of them are derived by Bayesian predictive densi-
ties. The third and fourth criteria are implemented by the
bootstrap technique, and their evaluations are, therefore,
computationally more intensive than the evaluations of the
�rst two. The proposed rules are compared by computer
simulations with the widely used AIC and MDL criteria.

1. INTRODUCTION

One of the most important problems in image processing is
the cluster validation. It arises usually with the task of im-
age segmentation, where the image pixels are grouped into
di�erent classes according to some prespeci�ed attributes.
In general, the segmentation can be supervised or unsu-
pervised, that is, done automatically without operator's
assistance. In many practical applications, the automatic
segmentation is the preferred or the only possible option.
The majority of unsupervised segmentation methods known
from the open literature assume that the number of classes
is known [5], [9]. Since in practice however, this is usually
not the case, there is an additional problem to be resolved,
i.e., the determination of the number of various classes of
pixels in the observed data [8], [11]. This problem is also
known as cluster validation. It has been recognized that
cluster validation is a very di�cult task, so it is not surpris-
ing that there is still a signi�cant ongoing research whose
aim is getting improved solutions [10].

Some relatively new methods for cluster validation are
based on the penalized maximum likelihood criteria. They
are composed of data and penalty terms, where the data
term is the negative of the loglikelihood function and the
penalty term represents the cost for overparameterization.
The data term quanti�es the �tness of the segmented im-
age to the original image and decreases as the number of
classes increases, whereas the penalty term for larger num-
ber of classes increases. Among the most popular criteria of
this form are the Akaike's information criterion (AIC) [11]
and the Minimum Description Length (MDL) [10]. The
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AIC, however, is not consistent, that is, the probability of
selecting the correct number of classes does not tend to one
as the size of the image increases. This feature is a result
of the incorrect penalty which is not a function of the data
size. The MDL on the other hand, has a larger penalty
that grows with the image size, and as a consequence, the
MDL tends to choose models with fewer parameters than
the AIC. In general, the straightforward application of the
AIC and MDL can lead to incorrect results [3]. For exam-
ple, in cluster validation it has been found that the AIC
and MDL frequently overestimate the number of di�erent
classes.

Here we derive approximated MAP criteria whose forms
are also penalized likelihoods. They all have identical data
terms as the AIC and MDL, but di�erent penalties. In
our derivations, we have allowed for incorporation of spatial
constraints, which can play a signi�cant role in the criteria.
The constraints and the inherent spatial ordering of the pix-
els are modeled by Markov Random Fields (MRF's). Since
the exact MAP criterion for cluster validation is computa-
tionally infeasible, we have resorted to various approxima-
tions. In our work, one important deviation from the exact
MAP solution for the number of classes is that our MAP
criteria are obtained by using the joint probability of num-
ber of classes and the underlying image. Thus, the solution
is the most probable number of classes and the underlying
image considered together.

We applied our criteria with the tree-structure iterated
conditional modes method (TS-ICM) for segmentation [5],
[6]. Our criteria combined with the TS-ICM provide a com-
plete automatic procedure for cluster validation and seg-
mentation where no threshold settings are required. In the
simulations, the procedure worked very well on all of the
used images.

This paper is organized as follows: In Section 2, we
de�ne the problem we want to solve. In Section 3, four cri-
teria for cluster validation are derived. In the derivation,
the concepts of Bayesian predictive densities (BPD) and the
bootstrap are exploited. The details of their implementa-
tion and simulation results are presented in Section 4 and
5, respectively.

2. PROBLEM STATEMENT

Let the observed image be given by Y = fyij : (i; j) 2 Sg,
where S = f(i; j) : 1 � i < M1; 1 � j < M2g denotes a



rectangular lattice. The underlying image is represented by
X=fxij : (i; j) 2 Sg and it is comprised of pixels that be-
long to one of m classes, where the number of classes is not
known. We model X as an MRF whose probability distri-
bution is denoted by f(X). In our derivations we assumed
that f(X) is a Gibbs distribution. Each class of pixels is
characterized by its own set of parameters which are also
unknown.

The underlying image is corrupted by noise W so that
the observed image is given by

Y = X +W (1)

where W = fwij : (i; j) 2 Sg. The noise samples are con-
sidered to be independent and zero mean Gaussian. Their
variance is unknown and in general may depend on the pixel
class they are associated with.

Given the observed data and the assumptions of the
data and noise models, our objective is to estimate the num-
ber of di�erent classes m.

3. PROPOSED CRITERIA

The number of classes can be determined by using the MAP
criterion given by

m̂MAP = argmax
k
ff(kjY )g (2)

= argmax
k
f
X
X

f(kjX;Y )g (3)

where k 2 f1; 2; � � � ;mmaxg with mmax being the maximum
number of possible classes, f(kjY ) is the posterior prob-
ability mass function of k classes given the data Y , and
f(kjX;Y ) is the probability mass function of k given the
underlying image X and the observed image Y . This crite-
rion is very di�cult to implement because of its extremely
large number of terms in the summation in (3).

An alternative is to seek for the MAP solution that
jointly yields the number of classes and the most probable
underlying image. For an image with k classes, we can write

f(X;kjY ) =
f(Y jX;k)f(Xjk)f(k)

f(Y )
(4)

where f(Y jX;k) is the density function of the data condi-
tioned on the number of classes and the underlying image,
and f(Xjk) is the Gibbs distribution of the underlying im-
age with k classes. Finally, f(k) is the a priori probability
of k classes. The maximization of f(X;kjY ) does not de-
pend on f(Y ), and therefore f(Y ) can be ignored. If we
assume uniform f(k), the MAP solution of (4) becomes

(X̂; m̂)
MAP

= arg max
(X;k)

ff(Y jX;k)f(Xjk)g: (5)

Given the number of classes k, we can �nd the underlying
image X for k = 1; 2; � � � ;mmax by an unsupervised image
segmentation technique [5], [6], where the segmented image
is obtained from

X̂ = argmax
X

ff(Y jX;k)f(Xjk)g: (6)

After we �nd the underlying images X̂ for k = 1; 2; � � � ;
mmax, we select the number of classes by

m̂MAP1 = argmax
k
ff(Y jX̂; k)f(X̂jk)g (7)

= argmin
k
f� ln f(Y jX̂; k)� ln f(X̂jk)g: (8)

Now, to determine f(Y jX̂; k) we use

f(Y jX̂; k) =

Z
�k

f(Y jX̂; �; k)f(�jX̂; k)d� (9)

where � is the parameter vector, and �k is the parame-
ter space when there are k classes. If we Taylor expand
f(Y jX̂; �; k) around the maximum likelihood estimate of �,

�̂, we obtain Z
�k

f(Y jX̂; �; k)f(�jX̂; k)d�

' (2�)
k

2 jHkj
�

1

2 f(Y jX̂; �̂; k)f(�̂jX̂; k) (10)

where Hk is the Hessian of � ln f(Y jX̂; �; k) evaluated at �̂.
From (7) and (10), and using the approximation ln jHkj 'Pk

i=1
2 ln ni, where ni is the number of pixels in class i, we

write our �rst MAP criterion as

m̂MAP1 = arg min
k
f� ln f(Y jX̂; �̂; k) +

kX
i=1

ln ni

� lnPL(X̂jk)g: (11)

In (11) we have dropped irrelevant terms and used the con-
cept of pseudo-likelihood, to avoid the intractable parti-
tion function in f(X) [1]. Thus, PL(X̂jk) is the pseudo-

likelihood function evaluated for X = X̂.
We continue with the description of the second criterion

which is based on BPD's. These densities have already
been successfully applied to model selections in other signal
processing problems [2]. To employ them, we partition the
available data into a training set YT and a validation set
YV . The MAP criterion can then be written as

m̂MAP2 = argmin
k
f� ln f(YV jYT ; X̂; k)� ln f(X̂jk)g (12)

where YT are the training data and YV are all the remaining
data. The �rst term in (12) can be manipulated similarly

as f(Y jX̂; �; k) in (9). As a result, we obtainZ
�k

f(YV jYT ; X̂; �; k)f(�jYT ; X̂; k)d�

' (2�)
k

2 jH0
k j
�

1

2 f(YV jYT ; X̂; �̂; k)f(�̂jYT ; X̂; k)

where H0
k is the Hessian of � ln f(YV jYT ; X̂; �; k) evaluated

at �̂. We then approximate (12) by

m̂MAP2 = argmin
k
f� ln f(YV jYT ; X̂k; �̂; k) +

1

2
ln jH0

kj

� lnPL(X̂jk)g: (13)

The criteria MAP1, and MAP2 are both penalized max-
imum likelihood functions with three terms, a data term



and two penalty terms. The data term corresponds to the
�tting error of the image model based on k classes. The
�rst penalty term penalizes for using additional model pa-
rameters and the second for spatial discontinuities.

Next we outline the derivation of the third criterion.
Instead of using the Hessians in the Taylor expansion, we
use the covariance matrices of the estimated parameters.
Then, the estimation of these matrices is carried out by the
well known bootstrap method [4], [7]. In this criterion, the
penalty is built in the covariance matrix of the estimated
parameters, and thereby, we avoid the derivation of the
penalty due to additional model parameters. By using the
Bayes' theorem, we can write for the BPD

f(YV jYT ; X̂; k)

=

R
�k

f(Y jX̂; �; k)f(�jX̂; k)d�R
�0
m

f(YT jX̂; �0; k)f(�0jX̂; k)d�0
: (14)

Again, by Taylor expansion, the � ln(�) of (14) can be
approximated by

� ln f(YV jYT ; X̂; k) = L(Y; YT ; k) + P (Ck ;C
0

k) (15)

where

L(Y; YT ; k) = � ln f(Y jX̂; �̂; k) + ln f(YT jX̂; �̂
0
; k)

and

P (Ck;C
0

k) = �
1

2
ln jCkj+

1

2
ln jC0kj:

Here Ck and C0k are the covariance matrices of the esti-
mated parameters from Y and YT , respectively. Note that,
L(Y; YY ; m) represents the di�erence of log-likelihood func-
tions obtained from the whole data and the training data.
From (12) and (15), the �nal estimator becomes

m̂MAP3 = argmin
k
fL(Y; YT ; k) + P (Ck;C

0

k)� lnPL(X̂jk)g:

(16)
Finally, the fourth criterion is also based on (12), how-

ever, it is implemented in a di�erent way. Namely, if we
express the Bayesian predictive density by

f(YV jYT ; X̂; k) = (17)Z
�k

f(YV jYT ; X̂; �; k)f(�jYT ; X̂; k)d�

and by Taylor expanding ln f(YV jYT ; X̂; �; k), we have

f(YV jYT ; X̂; k) =R
�k

f(YV jYT ; X̂; �̂; k)e
D(�;Ck)f(�jYT ; X̂; k)d�

where

D(�;Ck) = �
1

2
(� � �̂)T Ĉ�1

k (�� �̂): (18)

By moving the f(YV jYT ; X̂; �̂; k) in front of the integration,
the equation becomes

f(YV jYT ; X̂; k)

= f(YV jYT ; X̂; �̂; k)G(�; Ĉk ; k) (19)

where Ĉk is obtained from the bootstrap data and

G(�; Ĉk; k) =

Z
�k

[e
�

1

2
(���̂)T Ĉ

�1

k
(���̂)

�f(�jYT ; X̂; k)]d�: (20)

The MAP criterion becomes

m̂MAP4 = argmin
k
f� ln f(YV jX̂; �̂; k)� lnPL(X̂jk)

� lnG(�; Ĉk; k)g: (21)

The implementations of (16), and (21) are discussed in
more detail in the next section.

4. EVALUATION OF THE MAP CRITERION

BY THE BOOTSTRAP TECHNIQUE

To compute the MAP criteria (16) and (21), we �rst use
a method for unsupervised image segmentation. Once the
image is segmented, we apply the bootstrap scheme to gen-
erate sets of bootstrap data. Using these data, we evaluate
the covariance matrices needed in our criteria. The boot-
strap procedure was applied as follows. More speci�cally,
given the observed image data Y and the number of classes
equal to k, we segment the image into k classes, i.e. we
�nd X̂. Knowing X̂, we then generate the bootstrap data
Y �

b = fy�s : s 2 Sg, for b = 1; 2; � � �B, by randomly se-
lecting y�s from fys0 : s0 2 S; xs0 = xsg. With Y �

b for
b = 1; 2; � � �B, we calculate straightforwardly the parame-
ters ��b, and subsequently obtain the covariance matrix of
the estimated parameters Ĉk.

By partitioning the data into training and testing sub-
sets and using the above procedure, we easily evaluate the
criterion (16). For the fourth rule we also compute the value
of the integral in (21), that is (20). The evaluation of the
criterion is carried out according to

m̂MAP4 = argmin
k
f� ln f(YV jX̂; �̂; k)

� ln

"
1

B

BX
b=1

e
�

1

2
(��b��̂)T Ĉ

�1

k
(��b��̂)

#
� ln PL(X̂jk)g

where the parameters ��b and the covariance matrix Ĉk are
obtained from the bootstrap data.

5. SIMULATION RESULTS

To verify the performance of the MAP criteria, we tested
them on synthesized MR brain images. We also compared
them with the widely used AIC, and MDL criteria. The
size of these images was 256 � 256. In Figure 1, from top
to bottom we present the true image, noisy image, and seg-
mented image. Table 1 displays the simulation results from
100 independent trials of the MAP1, MAP2, MAP3, MAP4,
AIC, and MDL rules for various contrast-to-noise (CNR) ra-
tios. The results show that the MAP2, MAP3, and MAP4
perform best among the six. The MAP1 criterion chooses
the correct number of classes for high CNR's, whereas the



rulensegm: (CNR = 1) 2 3 4 5 6 7

MAP1 0 0 0 40 60 0
MAP2 0 0 0 98 2 0

MAP3 0 0 0 98 2 0
MAP4 0 0 0 99 1 0
AIC 0 0 0 0 18 82
MDL 0 0 0 0 21 79

rulensegm: (CNR = 3
4
) 2 3 4 5 6 7

MAP1 0 0 0 45 55 0
MAP2 0 0 0 100 0 0
MAP3 0 0 0 99 1 0

MAP4 0 0 0 99 1 0
AIC 0 0 0 0 23 77
MDL 0 0 0 0 42 58

rulensegm: (CNR = 2) 2 3 4 5 6 7

MAP1 0 0 0 73 27 0
MAP2 0 0 0 99 1 0
MAP3 0 0 0 100 0 0
MAP4 0 0 0 100 0 0

AIC 0 0 0 0 31 69
MDL 0 0 0 0 66 34

Table 1: Comparison of the MAP, AIC, and MDL rules for
image segmentation. The true number of classes is 5.

AIC and the MDL usually tend to overestimate the class
number.
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Figure 1: From top to bottom: Noiseless, noisy and seg-
mented MR image.


