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ABSTRACT

A new Bayesian framework for 3–D object classification and local-
ization is introduced. Objects are represented as probability density
functions, and observed features are treated as random variables.
These probability density functions turn out a non geometric na-
ture of models and characterize the statistical behavior of local
object features like points or lines. The parameterization of model
densities covers several terms of object recognition: locations and
instabilities of features, rotation and translation, projection, the as-
signment of image and model features, as well as relations. This
paper treats especially the probabilistic modeling of relational de-
pendencies between single features. The mathematical framework,
the training algorithms, as well as the localization and classifica-
tion modules are discussed in detail. The experimental evaluation
shows the usefulness of the introduced concepts on real image data.

1. INTRODUCTION

Probabilistic methods are state of the art in several areas of signal
processing and analysis. Speech recognition systems, for instance,
apply hidden Markov models at different levels of abstraction [4].
The application of statistical approaches for image analysis pur-
poses shows a considerable and still increasing interest.

The central problems of statistical object recognition are: given
an image; which objects appear most likely in the scene, and what
are the most probable pose parameters with respect to a reference
coordinate system. The motivation for a statistical setting to solve
these tasks is manysided. There are both theoretical and practical
reasons for probabilistic object recognition systems. Sensor data
are noisy and influenced by lighting, occlusion, segmentation er-
rors, clutter, or heterogeneous background, therefore a probabilis-
tic framework seems natural. A statistical approach is theoretically
motivated by the optimality of Bayesian classifiers with respect to
misclassifications and allows the use of results and well studied
methods of mathematical estimation theory.

A central problem within the statistical framework is to find a
suitable probability density function which is capable to describe
complex objects including all degrees of freedom. The presented
approach is based on simple features computed within a segmen-
tation step. These primitives should include the characteristics of
objects which are necessary to enable the identification and lo-
calization. The consideration of relational dependencies between
these features is expected to improve the discriminating power of
the used primitives. Figure 1, for instance, shows a geometrical
model and two sets of image features for fixed pose parameters and
varied lighting conditions. A suitable binary relation between 2–D
point features is given by the fact that two points might be con-
nected with an edge or not. Due to inevitable segmentation errors
this relation also demonstrates a probabilistic behavior within the
observations. In the following sections it is shown how relational
dependencies can be considered as aleatory variables and structural
dependencies of features are estimated by 2–D observations.

The paper is divided up into eight sections. The discussion of
related work (Section 2) is followed by Section 3 which treats
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Figure 1. 3–D model (left) and 2–D segmentation results of
views with varying illumination

mathematical details for statistical object modeling. The training
algorithms for model densities are derived in Section 4. There, the
Expectation Maximization algorithm (EM algorithm) is applied
for solving the incomplete data estimation problems induced by
the available 2–D training views. The usage of probabilistic object
models for object localization and recognition is shown in Sections
5 and 6. In order to demonstrate the practical use of the intro-
duced probabilistic framework, experimental results are described
in Section 6. The paper concludes with a summary of the presented
statistical approach and some hints for future research.

2. RELATED WORK

This work applies parameterized density functions for object mod-
eling. Probabilistic approaches to object recognition can be distin-
guished with respect to the chosen statistical models and the used
features. Shimshoni [5], for example, applies line features and cor-
responding ratios and angles for building up discrete probability
measures. These are suitable for the identification and the localiza-
tion of 3–D objects within gray–level images using the probabilistic
peaking effect. In contrast, in [7] parametric mixture densities are
used for solving 2–D object localization and classification prob-
lems. The features used in this case are restricted to oriented point
features.

The methods mentioned so far are based on segmentation re-
sults and model the statistical behavior of segmented features, like
straight line elements or points. The pose estimation algorithm
introduced in [6], however, shows that the localization of complex
objects can be done using gray–level features directly, if a 3–D
model is available. This method applies the maximization of mu-
tual information for the determination of position and orientation.
Nevertheless, the subsequent theory is also based on segmentation
results, since this technique was already successfully applied in
[2].

3. PROBABILISTIC MODELING OF OBJECTS

In contrast to geometric models, the probabilistic description of
objects has to characterize the statistical behavior of features and
their relations within the image space. Since the appearance of im-
age features might vary with the object’s pose, the models should
be parameterized with respect to these degrees of freedom, too.
To provide a complete probabilistic setting, also the assignment



of features and relational dependencies require a statistical repre-
sentation as well. The usage of heuristics, for example, to solve
the matching problem might work, but violates the principles of
the proposed statistical framework. The probabilistic modeling
of assignments, relations, and features results in model densities,
which are composed density functions. The required components
are introduced in the following subsections.

3.1. Mathematical Notation
The object recognition formalism has to distinguish between the
Dm–dimensional model and the Do–dimensional image space,
where Do � Dm. If we deal with 3–D object recognition using
2–D sensor data, for example, we set Dm = 3 and Do = 2. The
object classes considered within the recognition experiments are
represented by Ω1;Ω2; : : : ;ΩK . Since the classification of objects
is based on features, we denote the n� model features correspond-
ing to object class Ω� by c�;1; c�;2; : : : ; c�;n� . The observable
features of theDo–dimensional image space are denoted by the set
O = fo1; o2; : : : ; omg. In the above example, c�;l (1 � l � n�)
might be 3–D points and all elements of O would represent 2–D
image points. The statistical parameters characterizing model fea-
tures are defined by a�;1; a�;2; : : : ; a�;n. For instance, if normally
distributed 3–D model features are assumed, a�;l denotes the mean
vector ��;l 2 IRDm and the covariance matrix Σ�;l 2 IRDm�Dm .
The set of all parameters necessary for describing the object class
Ω� is called B�. In addition to feature–specific parameters, we
have to consider pose parameters, too. Primitives of the model
space can be rotated, translated and projected into the image plane.
This mapping is characterized by the affine transform given by
R 2 IRDo�Dm and t 2 IRDo . In the following discussion, pose
parameters are thus defined by R and t.

3.2. Statistical Modeling of Single Features
We start with considering the statistical modeling of single fea-
tures. Assuming that the probabilistic behavior of model feature
c�;l is characterized by the parameterized density p(c�;lja�;l), the
integration of the affine transform, which maps model onto image
features, can be done by a standard density transform.

Let us assume we have normally distributed 3–D model features
and an affine transform from the model into the image space. The
observable 2–D image features ok would also be normally dis-
tributed with mean vectors R��;lk + t and covariance matrices
RΣ�;lkR

T .
If the corresponding model and image features are given by

the sequence of pairs [(k; lk)]1�k�m and the features are pairwise
statistically independent, the density for a set of observe features
O = fo1; o2; : : : ; omg is defined by

p(Oj[(k; lk)]1�k�m; a�;1; : : : ; a�;n) =

mY
k=1

p(okja�;lk ; R; t) (1)

The independency assumption, of course, is a simplification. In
general, image features depend on each other. This dependency
structure will be embedded in model densities using the statistical
modeling of relations.

3.3. Statistical Modeling of Assignments
The corresponding image and model indices (k; lk) are defined by
the assignment function �� and are expected to be known in (1).
The probabilistic description of the assignment function is based
on a discrete statistical model. The discrete function

�� :
n

O ! f1; : : : ; n�g
ok 7! lk ; k = 1; 2; : : : ;m :

(2)

induces a discrete random vector �� = (��(o1); ��(o2); : : : ;

��(om))
T 2 f1; : : : ; n�gm. With each random vector, a discrete

probability p(��) can be associated, where the discrete probabil-
ities sum up to one, i.e.

P
��
p(��) = 1: If, for instance, the

assignments of image features are pairwise statistically indepen-
dent, the factorization

p(��) =

mY
k=1

p(�(ok)) (3)

is possible. The probability of the random vector is thus given by
the product of its components’ probabilities.

3.4. Statistical Modeling of Relations
Relations can be defined by indicator functions. Let us assume aq–
nary relation. For an observed q–tuple (ok1 ; : : : ; okq ) of observed
features, we can compute the binary value

�(ok1 ; : : : ; okq ) =

n
1 ; if the relation is satisfied
0 ; otherwise : :(4)

This indicator function induces a q–dimensional binary array,
which can be considered as an aleatory variable. Thus, like the
assignment function, a discrete probability is associated with each
array � =

�
�(ok1 ; : : : ; okq )

�
1�k1;:::;kq�m

. It is assumed that the

observed relations depend on relations in the model space. Thus
relations rely upon the assignment between image and model fea-
tures. This statistical dependency is expressed within the likelihood
p(�j��), which is the discrete probability that the array � is ob-
served, if the assignment function �� is assumed.

Let us consider the neighborhood relationship, where two points
are neighbors, if they are connected by a line. The binary matrix
� 2 IRm�m for the scene shown in Figure 1 (middle) is

�
�k0;k00

�
1�k0;k00

�7
=

0
BBBB@

0 1 0 1 1 0 0
1 0 0 0 0 1 0
0 0 0 1 0 0 1
1 0 1 0 0 0 0
1 0 0 0 0 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 0

1
CCCCA :(5)

The segmentation results allow the observation of triples
(ok0 ; ok00 ; �k0;k00), where �k0;k00 2 f0; 1g is the Boolean value
which indicates whether features ok0 and ok00 fulfill the consid-
ered relation in the image space or not. If statistically independent
relations and assignments are assumed, the conditional discrete
probability p(�j��) for observing a binary matrix � is thus given
by

p(�j��) =

mY
k0;k00=1

p(�k0;k00 jlk0 ; lk00) ; (6)

where lk0 := ��(ok0) and lk00 := ��(ok00).

3.5. Model Densities
So far we have discussed the statistical modeling of features, as-
signments, and relations. Now we combine all these statistical
components to describe a compound density for the characteriza-
tion of object features within the image space.

The compound density for observing a (q + 1)–tuple
(ok1 ; ok2 ; : : : ; okq ; �k1;k2;:::;kq ) is

p((ok1 ; ok2 ; : : : ; okq ; �k1;k2;:::;kq )j��; B�; R; t) =

p(��)p(�k1;k2;:::;kq j��)

qY
s=1

p(oks ja�;s; R; t) : (7)

The non–observable assignment function can be eliminated by
marginalization, due to its statistical appearance and the presence
of random vector ��. For simplicity and computational efforts,
statistically independent assignments and relations are assumed.



The model density for an observed set of featuresO and the binary
matrix � — without knowing the assignment — results in

p(O; �jB�; R; t) =

= p(f(ok0 ; ok00 ; �k0;k00)j1 � k
0

; k
00

� mgjB�; R; t)

=

mY
k0;k00=1

n�X
l0;l00=1

p(��(ok0) = l
0

)p(��(ok00) = l
00

)p(�k0;k00 jl
0

; l
00

)

p(ok0 ja�;l0 ; R; t)p(ok00 ja�;l00 ; R; t) (8)

The computational complexity for evaluating the model density (8)
for a given observation is obviously bounded byO(n2

�m
2).

Within this model density the parameter set B� includes the
discrete probabilities p(��), p(�j��), and the feature–specific pa-
rameters a�;1; a�;2; : : : ; a�;n� . The model generation process is
now expected to determine the parameter set B� out of a set of
observed images.

4. MODEL GENERATION FROM PROJECTED DATA

The estimation of model parameters will use the rotation and trans-
lation as well as the computed features and their relations of each
2–D training view. If N training views are available, the training
data are represented by the set f%O; %R; %tj1 � % � Ng. Since
we learn the parameters for model densities of 3–D objects, the
training data set is latent with respect to the range information. In
addition to depth data, the assignment function �� is not part of the
observation, too. The model generation process has thus to work
on incomplete training data.

4.1. Incomplete Data Estimation
There exist several different methods which deal with incomplete
data estimation problems. The most common used techniques ap-
ply the Expectation Maximization algorithm (EM algorithm, [1]).

Assuming that the observable random variables are denoted by
X and the hidden variables by Y , we can define the parametric
densities p(X;Y jB), p(Y jX;B), and p(XjY ;B), where B rep-
resents the density parameters. The iterations of the EM algorithm
expect an initialization bB(0) and iteratively maximize the Kullback
Leibler statistics

Q( bB(i+1)
j bB(i)

) =

Z
p(Y jX; bB(i)

) log p(X;Y j bB(i+1)
)dY ; (9)

which is the conditional expectation of the log–likelihood func-

tion log p(X;Y j bB(i+1)
). The iterations terminate, if a station-

ary point is reached. If multiple observations f%X j1 � % �
Ng are available, the sum of single Kullback–Leibler statistics
%Q( bB(i+1)

j bB(i)
) for the observation %X has to be maximized:

Q( bB(i+1)
j bB(i)

) =

NX
%=1

%
Q( bB(i+1)

j bB(i)
) : (10)

The iterative optimization of theQ–function is usually done by the
application of gradient methods. The convergence properties and
further theoretical results on this general iterative scheme can be
found in [1].

4.2. Estimation of Model Parameters
The model parameters B� characterizing object class Ω� have to
be estimated using incomplete data and the EM algorithm. We
assume statistically independent assignments and relations. Here,
the relational dependencies are restricted to binary relations, a
generalization is straight forward. The considered primitives are
point features, which are assumed to be normally distributed.

4.2.1. Kullback Leibler Statistics
The computation of training formulas first requires the Kullback

Leibler statistics for the model density (8) defined in Section 3.
The non–observable part is restricted to the missing assignment.
For one observed triple �(%; k0; k00) = (%ok0 ; %ok00 ; %�k0;k00) we
get the Q–function [2]

%
Qk0;k00( bB(i+1)

� j bB(i)

� ) =

=

n�X
l0;l00=1

p(l
0

; l
00j�(%; k0; k00); bB(i)

� ;
%
R;

%
t)

log p(� (%; k0; k00); l0; l00j bB(i+1)
� ;

%
R;

%
t) ; (11)

in accordance with (9), where l0 and l00 represent indices of model
features. If we sum up this Q–function with respect to %, k0, and
k00 (c.f.. (10)), we get the Kullback Leibler statistics required for
the EM iterations.

4.2.2. Training of Assignments
The estimation formula for the discrete probabilities p�;l :=

p(��(ok) = l) (1 � l � n�) results from computing the partial
derivatives of the Kullback Leibler statistics, where the probability
constraint is enforced by Lagrange multipliers. We define h :=
2 �
PN

%=1
%m, where %m denotes the number of image features

of the %–th training view, and get the closed form reestimation
formula [2]

bp(i+1)
�;l =

1
h

X
%;k0;k00;l0

p(l
0

; lj�(%; k0; k00); bB(i)

� ;
%
R;

%
t) : (12)

4.2.3. Training of Relations
A similar derivation gives us the training formulas for relational

dependencies of single features. The term p�(vjl
0; l00), where

v 2 f0; 1g, and 1 � l0; l00 � n�, measures the discrete probability
that two model features given by the indices l0 and l00 satisfy the
relation or not, which is observed within the image space. Since the
assignment of image and model features is not known, the discrete
probabilities can be estimated iteratively using

bp(i+1)
� (vjl0; l00) =

X
%;k0;k00

%�
k0;k00=v

p(l
0

; l
00j� (%; k0; k00); bB(i)

� ;
%
R;

%
t)

X
%;v;k0;k00

p(l
0

; l
00j(%ok0 ;

%
ok00 ; v); bB(i)

� ;
%
R;

%
t)
:

4.2.4. Training of Mean Vectors
The parameters of the normally distributed 3–D point features,

which are considered as continuous random variables, can also
be computed using above Kullback Leibler statistics. The mean
vectors ��;l are estimated using a closed form iterative scheme,
which can be derived from the Kullback Leibler statistics (see [2]
for details). The result is

b�(i+1)
�;l =

 X
%;k0;k00;l0

p(l
0

; lj�(%; k0; k00); bB(i)

� ;
%
R;

%
t)
%
R
T
�
%
D�;l

�
�1 %

R

!
�1

X
%;k0;k00;l0

p(l
0

; lj�(%; k0; k00); bB(i)

� ;
%
R;

%
t)
%
R
T
�
%
D�;l

�
�1�%

ok0 � %
t
�
;

where %D = RΣ�;lRT . If the covariance matrix is also un-
known, an iterative optimization scheme is required for the maxi-
mization of the Q–function [2].

The EM algorithm is a local optimization method. Thus the ini-
tialization of the unknown parameters is crucial for its success. In



our experiments, we assume uniformly distributed discrete prob-
abilities; the mean vectors were initialized using a single 2–D
reference view, and the depth components of means were set to
zero.

5. STATISTICAL LOCALIZATION
The automatically generated model densities are now applied to
localize and classify objects. Since the models are parameterized
densities with respect to pose parameters, the localization of objects
corresponds to a parameter estimation problem. Given a set of
observed featuresO and the indicator matrix�, the pose parameters
result from the maximum likelihood estimation

fbR;btg = argmax
R; t

p(O; �jB�; R; t) : (13)

For solving this global optimization problem, we use the adaptive
random search technique based on a mixture of Gaussian and start
local maximization applying the Downhill Simplex algorithm [2].

6. STATISTICAL CLASSIFICATION
The estimated pose parameters R and t allow the computation of a
posteriori probabilities. For an object of class Ω�, the a posteriori
probability for a set of observed features is

p(Ω�jO; �) =
p(Ω�)p(O; �jB�; R; t)

p(O; �)
: (14)

Thus, the classification module can apply the Bayesian decision
rule:

� = argmax
�

p(Ω�jO; �) ; (15)

which decides for the object class with the highest a posteriori
probability and minimizes the probability for misclassifications.

7. EXPERIMENTAL RESULTS

The introduced statistical framework for object modeling, local-
ization, and classification has been tested on real image data. The
tested relation between features is the neighborhood relationship.
Two point features are defined to be neighbors, if they were con-
nected by a straight line element. The images for parameter estima-
tion were captured by a camera which is mounted on a calibrated
robot’s hand, i.e. for each training view the pose parameters of the
object to be learned are known.

In a first series of experiments we tested the system using four
2–D objects. The model densities were trained using 300 images
of each object. The test set consisted of 1000 images showing
different objects with homogeneous background features. The
recognition rate was 93% for both point and line features. We
also considered 100 scenes which include one known object and
unknown background objects (c.f. Figure 2). The rate of correct
localizations for these fairly complex scenes increased from 10%
to 30%.

Figure 2. 2–D localization results (right) using point features
(middle)

The 3–D experiments considered also four different object
classes of simple, but quite similar polyhedral 3–D objects. Dur-
ing the training stage 400 views of each object were used. It is
expected that the relations improve the localization and recogni-
tion rates. Indeed, for multiple object scenes with heterogeneous
background point features are less discriminating than line fea-
tures, which take relations into consideration. Figure 3 shows an

example for a scene, which includes one known object. The others
are considered as background features. The point features result in
wrong pose parameters, whereas the correct object position could
be computed using straight line features defined by binary rela-
tions of points. Tests using 100 complex scenes which include one

Figure 3. 3–D localization results using point (middle) and line
features (right)

known object with heterogeneous background features, showed an
increase of correct localizations from 15% to 24%, if neighbor-
hood relations instead of 2–D point features were used. Within the
classification experiments of single objects we tested 1600 images.
The recognition rate using point features was 68% and decreased
to 59% if relations were taken into account. The reason for this
unexpected result is the instability of line features. If a line is
divided up into two small lines, the relation is no longer satisfied.

8. SUMMARY AND CONCLUSIONS
In contrast to classical geometric approaches for object recogni-
tion, we have shown that statistical methods are also suitable to
deal with object identification and localization problems. Model
generation as well as pose computations correspond to parame-
ter estimation problems, whereas the classification is based on the
Bayesian decision rule. The introduced framework allows statisti-
cal characterization of the assignment function between model and
image features as well as the modeling of relations using discrete
random vectors or arrays. Due to the fact that the assignment of
features is neither observable during the training nor recognition
stage, we have to deal with incomplete data estimation problems.
Here, the EM algorithm was used to derive iterative model gener-
ation algorithms. Instead, the pose estimation was done applying
adaptive random search techniques.

Future research should concentrate on the following topics: The
pose computation corresponds to a parameter estimation problem,
the use of multiple views will increase the size of sample data and
thus the reliability of the estimated parameters. Since the quality
of classifiers crucially depends upon the used features, more com-
plicated features than point or line features should be considered
within the statistical modeling.
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