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ABSTRACT

We propose a constructive method, inspired by
Simpson’s Min-Max technique, for obtaining
fuzzy neural networks. It adopts a cost function
depending on a unique net parameter. This feature
allows us to apply a simple unimodal search for
determining this parameter and hence the
architecture of the optimal net. The algorithm
shows a good behavior with respect to other
methods when applied to real classification
problems. Due to the adopted fuzzy membership
functions, it is particularly indicated when the
classes are extremely overlapped (for instance, in
the case of biological data). Some results at this
regard are reported in the paper.

1. INTRODUCTION

In order to improve the efficiency of neural
networks, the synergism between them and other
important topics has been recently exploited in the
technical literature. The topics involved in this
effort are based on very general principles related
to both optimization and human behavior
imitation. They are the Learning Theory and the
Fuzzy Inference Systems [1−3]. The present work
regards the development of a constructive
algorithm for determining fuzzy neural networks.
As suggested by Learning Theory, this approach
improves the generalization capability of the net.
We obtain it in connection with Simpson’s Min-
Max technique [4], which adopts simple fuzzy
membership functions and assures low
computational cost, robustness and ability to
classify real data. Our algorithm minimizes a cost
function depending on a unique net parameter.
This feature allows us to apply a simple unimodal
search for determining this parameter and hence the
architecture of the optimal net (in terms of
structural complexity). Simulations are described
to show the good behavior of the algorithm,

especially in classification problems where the
classes are particularly overlapped.

2. MIN-MAX TECHNIQUE

The fuzzy neural network proposed in [4] for
classification problems is characterized by its
ability to learn on-line and in a single pass
through the data. The net operation consists in a
suitable mechanism of partitioning the input
space. The regions corresponding to the classes are
covered by hyperboxes parallel to the coordinate
axes, with appropriate membership functions. The
location of each hyperbox is completely defined by
two extreme vertices: the ‘min’ and ‘max’ vertices.
Min-Max training algorithm consists in
determining the hyperboxes necessary to cover the
classes. It is characterized by a three step process:
1) Expansion: in this step the hyperboxes already
constructed are expanded in order to accommodate a
new example of the training set. The expansion is
limited by a maximum dimension, represented by
a parameter θ to be chosen carefully (θ∈(0,1]) ;
2) Overlap test: determination of overlaps among
hyperboxes of different classes;
3) Contraction: elimination of overlaps, if they
exist.

The structural complexity of the resulting
neural net is directly defined by the final number
of hyberboxes. In fact, the net is constituted by a
hidden layer containing a neuron per hyperbox and
an output layer with a neuron per class. The
original Simpson’s technique has been modified in
relation to the problems at hand. In particular, to
obtain smoother classifications hyperellipsoids
have been adopted as membership functions in
problems whith extremely overlapped classes.
More precisely, the original hyperboxes are
replaced by hyperellipsoids only at the end of the
constructive process, in order to save the low
computational cost of Simpson’s technique. The



general expression of the new membership
functions is the following:
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Where: x i is the i-th component of the input
vector x; ci is the i-th component of the hyperbox
center c; the parameters ai, bi control the shape of
function µ(x) and are proportional to the hyperbox
sizes.

3. THE CONSTRUCTIVE STRATEGY

Learning theory suggests as the objective function
to be minimized during training the sum of two
terms, Es and Ec, which "measure" respectively

the error on the training set and the structural
complexity of the net. We note that both the
complexity of the net and the accuracy of the
classification of the training set depend on the
maximum size allowed to the hyperboxes, which
is proportional to the parameter θ. The two
quantities Ec and Es can be reasonably measured

by the number N of hyperboxes (neurons of the
hidden layer) and by the number M of
misclassifications occurred during training. The
resulting objective function is therefore:

F(θ) = (1-λ) ·M + λ ·N           (2)
where λ  (λ∈[0,1]) is a weight to be determined
taking into account that small values of λ  yield
nets more complex but less erroneous (the
opposite situation characterizes large values of λ) .
The dependence of F on θ is not smooth as a
consequence of the several possible choices the
Min-Max algorithm can undertake during training.
Preliminary tests have in fact shown that
functions Es(θ) and Ec(θ) are affected by several

local minima. Because of this irregular behavior,
in order to find the optimal value θmin without

being trapped in local minima of F, a uniform
sampling of the whole interval of interest of
parameter θ is necessary. The proposed algorithm
carries out this sampling in successive intervals of
decreasing length and with a growing resolution.
In each interval the value of θ which minimizes F
is determined by considering, for all the sampled
values of θ, the corresponding net and function F.
The successive interval is then centered in
correspondence to this minimum and sampled with
a larger resolution. The number of values of θ to
be considered for achieving the optimal value θmin
is drastically reduced by taking account that:

1) by decreasing the value of θ step-by-step, a

value θ  exists such that Es( θ )=0, i.e. a “zero-

errors” situation is achieved. When the value θ  is
obtained, no further decrease of θ is necessary,
since F(θ) could only increase with respect to

F( θ ). In fact: Es(
~θ )=0 and Ec(

~θ )≥Ec( θ ) for
~θ < θ ;
2) the maximum resolution to be used is chosen
on the basis of the accuracy required by the
training set in the input space.

4. SIMULATION RESULTS

To test the efficiency of the proposed algorithm
we have carried out several experiments, some of
them are described in the following:

Twin-spiral: This is a classical benchmark
problem used for its extreme nonlinearity [5]. The
training set consists of 194 points (X-Y real
values) arranged in two interlacing spirals. The
more significant results of the test are reported in
Tab. 1 and in Fig. 1. They compare favorably
with respect to other methods both in terms of
complexity and accuracy [6].

Iris: This is a well-known taxonomic problem,
often used as a benchmark. The training set
consists of 150 four-dimensional patterns which
represent multiple measurements of three different
species of plants: Iris setosa, I. versicolor, I.
virginica [7]. The results obtained in this case,
summarized in Tab. 2, are superior to those
available in the technical literature which we are
aware of [8].

Bear skulls: Problem data consist in a set of
skull measurements (basal length and zygomatic
width) of two species of upper Pleistocene bears
(Ursus spelaeus, U. arctos) and two present sub-
species (U. arctos alpinus, U. arctos marsicanus).
The best result is obtained with λ=0.5 and
θmin=0.43, which corresponds to a net constituted

by only 6 hidden neurons. The misclassification
amounts to 6.3%. This result is considered by
specialists in Paleontology very interesting due to
the extreme overlapping of the four classes [9].

Phoneme classification: The use of our
algorithm in a hybrid ANN/HMM (Artificial
Neural Network/Hidden Markov Model) system for
continuous speech recognition [10, 11] has been
investigated. The phoneme classifier, which
constitutes the first part of the recognition system,
has been trained by means of TIMIT database.
Preliminary results show the superiority of our
approach in terms of generalization capability,



time required for training and representation of
widely spreaded data, in comparison to the same

system adopting a statistical classifier based on
gaussian mixture.

TWIN-SPIRAL PROBLEM: CLASSIFICATION RESULTS

λ θmin Misclassifications Rejects Hidden neurons

0÷0.1 0.19 0 % 1 % 18

0.5÷0.75 0.21 0 % 1 % 16

0.78 0.25 3.1 % 0 % 14

0.8÷0.82 0.74 26.8 % 0 % 4

0.9÷1 0.84 33.5 % 0 % 2

Table 1: The table describes the classification results obtained by the proposed constructive algorithm for
the twin-spiral problem. The optimal result in terms of generalization capability is obtained for λ=0.5
and θmin=0.21.

      
(a) (b)

Figure 1: Twin-spiral problem: (a) the distribution of the hyperboxes for λ=1 and θmin=0.84; (b) the

same one for λ=0.5 and θmin=0.21.

IRIS DATA PROBLEM: CLASSIFICATION RESULTS

λ θmin Misclassifications Rejects Hidden neurons

0÷0.1 0.18 0 % 2 % 23

0.15÷0.33 0.42 0.67 % 0 % 6

0.5 0.54 1.34 % 0.67 % 4

0.67÷1 1 4 % 0 % 3

Table 2: The table describes the classification results obtained by the proposed constructive algorithm for
the iris data problem. The optimal result in terms of generalization capability is obtained for λ=0.15 and
θmin=0.42.



5. CONCLUSIONS

The proposed method yields very satisfactory
results in terms of generalization, net complexity
and processing time. It operates well in real
classification problems; especially with biological
data, where the classes are overlapped and a sharp
boundary among them does not exist. The
algorithm performances depend on the order of
presentation of the examples of the training set.
However, this factor (that requires a proper data
ordering) is relevant only in the case of off-line
learning. There are other factors which also affect
the behavior of the algorithm, in particular the
type of membership function. In fact, in several
applications where the classes are particularly
overlapped, the use of membership functions
different from the original hyperbox, as for
instance the hyperellipsoid, gives better results.
Finally, we remark that constructive approach in
connection with neuro-fuzzy modelling is a very
important and active research topic. The Min-Max
technique is particularly suited for this purpose. In
fact, the hyperboxes found by the algorithm can be
easily used for deriving the premise part for each
if-then rules of the underlying model [12]. Some
preliminary results at this regard are encouraging.
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