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ABSTRACT

The aim of this paper is to discuss a nonlinear approx-

imation problem relevant to the approximation of data

by radial-basis-function neural networks. The approx-

imation is based on superpositions of translated Gaus-

sians. The method used enables us to give explicit ap-

proximations and error bounds. New connections be-

tween this problem and sampling theory are exposed,

but the method used departs radically from those com-

monly used to obtain sampling results since (i) it ap-

plies to signals that are not band-limited, and possibly

even discontinuous (ii) the sampling knots (the cen-

ters of the radial-basis functions) need not be equidis-

tant (iii) the basic approximation building block is the

Gaussian, not the usual sinc kernel. The results given

o�er an answer to the following problem: how com-

plex should a neural network be in order to be able

to approximate a given signal to better than a certain

prescribed accuracy? The results show that O(1=N)

accuracy is possible with a network of N basis func-

tions.

1. INTRODUCTION

Radial-basis-function neural networks were developed

for data interpolation but have been successfully ap-

plied to other problems, including adaptive equaliza-

tion and spread spectrum systems [1]. The key problem

is the approximation of a given f by

NX
i=1

ai g(kt� tik):

There are several possible choices for g, including the

multi-quadratic, inverse multi-quadratic and Gaussian.
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This paper turns around the approximation prop-

erties of the Gaussian function

g(t; �i) =
1

�i
p
2�
e�t

2=2�2
i ;

which can be used as a building block for approximat-

ing other continuous or even discontinuous functions to

arbitrarily small tolerances. The simplest way in which

Gaussian functions can be combined is illustrated by

NX
i=1

ai g(t� ti; �i): (1)

These linear combinations of translated Gaussians have

very good approximation properties. A recent and in-

teresting work [2] addresses the approximation of �nite-

energy signals in this way. It argues that these rep-

resentations can be used to represent signals and im-

ages e�ciently, to the point of competing with standard

transform techniques such as discrete cosine transform

coding.

This paper discusses the extent to which a given

function can be approximated by superpositions of trans-

lated Gaussian functions, or, equivalently, the approxi-

mating properties of Gaussian radial-basis-function neu-

ral networks. Section 2 recalls a general property of

functions of the form

NX
i=1

ai g(t� ti; �);

and section 3 contains the main result, a constructive

approach that yields the coe�cients ai as samples of

the function to be approximated, that is, ai = f(ti).

The set ftig is subject only to weak restrictions. In a

sense, we are in presence of a nonuniform sampling the-

orem for functions that are not band-limited, using a

Gaussian function instead of the usual sinc kernel. The

approximation result yields the values of the parame-

ters of the approximating Gaussian functions without



any computational e�ort, and allows arbitrarily small

errors: the error is O(1=N).

The approximation properties of sigmoidal func-

tions were discussed in [3], and a similar O(1=N) result

is known for sigmoidal functions [4]. It has also been

shown [5] that radial-basis-function neural networks

can form arbitrarily close approximations for contin-

uous functions, provided that there are enough basis

functions. Our results are quite distinct from these:

we concentrate on superpositions of Gaussians, not sig-

moidal functions (indeed, our methods apply for many

other bell-shaped curves, not necessarily Gaussian); we

impose distinct or weaker restrictions on the functions

to be approximated (continuity is not required); our

methods are constructive and shed some light on the

connections between this problem and certain general-

ized sampling results.

Over a thousand papers have been written on sam-

pling (see the references in [6{8], for example). There

are many nonuniform sampling results for band-limited

signals [9{16], as well as many uniform sampling results

for not necessarily band-limited signals [17]. However,

almost nothing is known about one aspect of the prob-

lem studied here: nonuniform sampling expansions for

functions that are not band-limited, either for the sinc

kernel, or for other kernels. The works [18, 19] are ex-

ceptions. More recently, [20] discusses possible connec-

tions with number theory, and [21] addresses a similar

problem in the context of multiresolution analyses of

L2.

2. APPROXIMATION BY

SUPERPOSITIONS OF A SINGLE

GAUSSIAN FUNCTION

A theorem of Wiener shows that any function belonging

to L1 can be approximated to any prescribed tolerance,

in the L1 norm, by linear combinations of the translates

of a single function  2 L1

NX
i=1

ai  (t� ti);

if and only if the Fourier transform of  has no zeros.

Wiener also showed that a similar result holds in L2 if

and only if the set of zeros of the Fourier transform of  

has zero measure. For proofs of these results see [22{

24], for example. Since the Gaussian function g(t; �)

belongs to both L1 and L2, independently of �, and its

Fourier transform has no zeros, the results of Wiener

imply that, for any f 2 L1 and � > 0, there is an integer

N and constants (ai)1�i�N and (ti)1�i�N such that

Z
1

�1

�����f(t)�
NX
i=1

ai g(t� ti; �)

����� dt < �:

A similar result holds for any f 2 L2, the approxima-

tion being now in the L2 norm,

Z
1

�1

�����f(t)�
NX
i=1

ai g(t� ti; �)

�����
2

dt < �;

that is, in the least-squares sense. These immediate

corollaries of Wiener's approximation results generalize

the results obtained, at much greater length, in [2].

It is remarkable that this approximation property

holds independently of the value of �. Note that the

spaces L1 and L2 contain very rapidly varying and dis-

continuous functions. Any of these functions can be

arbitrarily well approximated by Gaussian curves, no

matter what value of � is selected, that is, no matter

how much spread out the Gaussian is.

The problem is how to select N , (ai)1�i�N and

(ti)1�i�N , and how to obtain error bounds. We will dis-

cuss an approach which leads to an approximation the-

orem that has the following characteristics: (i) it solves

the evaluation problem of N , (ai)1�i�N and (ti)1�i�N
with no computational e�ort at all (ii) it applies to sig-

nals that are not band-limited, possibly even discontin-

uous (iii) the sampling expansions need not be based

on equidistant sets of samples or knots (iv) the basic

approximation building block is the Gaussian function,

not the usual sinc kernel (v) it yields an useful upper

bound for the approximation error.

3. MAIN RESULT

Consider the convolution

f�(t) =

Z +1

�1

f(�)g(t � �; �) d�:

Generally speaking, we will require that f be such that

f� ! f in the pointwise sense as � ! 0. There are

several well-known conditions that ensure this, for the

Gaussian kernel as well as for others (see, for example,

[23]).

Theorem 1 Let f : R ! R be a function of bounded

variation satisfying the above hypothesis, and vanishing

outside [0; 1]. Denote by ftig any N reals such that

i� 1

N
< ti <

i

N
; (2)



for 1 � i � N , and let

f�(t) =

Z 1

0

f(�)g(t� �; �) d�: (3)

Then,

�����f�(t)�
1

N

NX
k=1

f(tk)g(t� tk; �)

����� �

� 1

�N

Vf +Mfp
2�

;

where Mf denotes the maximum value of f , and Vf its

variation.

Proof: To simplify the notation let

sN (t) =
1

N

NX
k=1

f(tk)g(t� tk; �): (4)

Applying the mean value theorem to (3) yields

f�(t) =
1

N

NX
k=1

f(�k)g(t� �k; �);

where the N reals �i (1 � i � N) satisfy (2). This

leads to

jf�(t)� sN (t)j �

� 1

N

NX
k=1

jf(�k)g(t� �k; �)� f(tk)g(t� tk; �)j

� VF (t)

N
;

where VF (t) denotes the variation of the function

F (x) = f(x)g(x� t; �)

in [0; 1], which is a function of t. But

VF (t) � Vfkgk1 + Vk(t)kfk1:

Now kgk1 is the maximum value of g(x; �), that is

g(0; �) =
1

�
p
2�
:

The quantity Vk(t) denotes the variation of k(x) =

g(x� t; �), for x 2 [0; 1]. This is bounded by the total

variation of k(x),

Vk(t) �
2

�
p
2�
:

Note that the approximation error is O(1=N) in the sup

norm. The theorem still holds if f is discontinuous (but

still of bounded variation). In this case the proofs are

somewhat longer, and require the second mean-value

theorem [25].

As � grows, f� becomes an increasingly better ap-

proximation to f (f� ! f in the sense of pointwise

convergence). By selecting � and N , it is always pos-

sible to obtain arbitrarily good approximations to f ,

since

kf � sNk � kf � f�k+ kf� � sNk

in any norm. The method used is similar to the method

used in [18,19] to derive nonuniform sampling theorems

for the sinc and other kernels.

The result given o�ers an answer to the following

problem: how complex should a radial-basis-function

neural network be in order to be able to approximate

a given signal to better than a certain prescribed accu-

racy? The results show that O(1=N) accuracy is pos-

sible with a network of N basis (Gaussian) functions.
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