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ABSTRACT

A new and e�ective design method is presented for sta-

tistical regression functions that belong to the class of

mixture models. The class includes the hierarchical

mixture of experts (HME) and the normalized radial

basis functions (NRBF). Design algorithms based on

the maximum likelihood (ML) approach, which em-

phasize a probabilistic description of the model, have

attracted much interest in HME and NRBF models.

However, their design objective is mismatched to the

original squared-error regression cost and the algorithms

are easily trapped by poor local minima on the cost

surface. In this paper, we propose an extension of

the deterministic annealing (DA) method for the de-

sign of mixture-based regression models. We construct

a probabilistic framework, but unlike the ML method,

we directly optimize the squared-error regression cost,

while avoiding poor local minima. Experimental re-

sults show that the DA method outperforms standard

design methods for both HME and NRBF regression

models.

1. MIXTURE OF EXPERTS REGRESSION

In recent years, there has been growing interest in learn-

ing methods for regression functions that can be statis-

tically interpreted as mixture models or mixture of ex-

perts (ME) models. The ME regression function takes

the form:

g(x) =
X

j

P [jjx]f(x;�j); (1)
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where P [jjx] is a non-negative weight of association

between input, x and the jth \local expert regression

function", f(x;�j). Each local expert, f(x;�j), is usu-

ally a constant, linear or simple nonlinear function of

x and depends on the parameter set, �j.

The weights of association can be naturally inter-

preted as a probability distribution since
P
j

P [jjx] = 1.

Hence, the ME model can be interpreted as a proba-

bilistic partition of the input space - every point in the

input space belongs in probability to partition cells,

each of which is governed by a local regression model.

Some popular neural network approaches to regres-

sion, such as the hierarchical mixture of experts (HME)

[4] and normalized radial basis functions (NRBF) [8],

can be formulated as mixture of experts models.

1.1. The learning problem

Consider the problem of learning a regression function

from a \training set", T � f(xiyi)g,i = 1; 2::N . The

natural choice of learning criterion is the minimization

of the average squared-error cost measured over the

training set,

min
f�jg;fP [jjxig

D =
1

N

X

i

kyi � g(xi)k
2 (2)

However in [3] and [4], a maximum likelihood (ML)

criterion,

max
f�jg;fP [jjxig

L =
X

i

log
X

j

P [jjxi]e
�jjyi�f(xi;�j)jj

2

;

(3)

was preferred for a few reasons - Firstly ML training

is fast, and performed better than minimum squared-

error training in experiments. Further, ML training

can realized by the Expectation Maximization (EM)

algorithm [2] which has useful convergence properties.

Also, ML training yields \competitive" solutions in which



relatively few experts are strongly activated for any

given input; Squared-error training yields \co-operative"

solutions, where many experts typically contribute to

give an output. In [3], competitive models were favored

based on the advantages of a localized representation.

However, despite the advantages and promising re-

sults of the ML algorithm,we believe that the minimum

squared-error cost is a more appropriate training crite-

rion. Speci�cally, we note that the ML criterion of (3)

encourages an individual �t between output yi and each

expert f(xi;�j), rather than the co-operative �t based

on the ME output g(xi). While gradient ascent on the

ML cost surface sometimesminimizes the squared-error

better than direct gradient descent on the squared-error

cost, all that this really suggests is that the squared-

error surface is more complex than the ML surface,

with numerous poor local optima to trap simple descent

methods. Rather than abandon the squared-error cri-

terion to avoid the design di�culty, we suggest a more

powerful method, deterministic annealing (DA), for the

minimization.

2. DETERMINISTIC ANNEALING

Our work is based on the DA method proposed in the

context of data clustering[11] and related problems[12]

and its extensions to incorporate structurally constrained

data clustering problems [5][6] which �nds practical use

in the design of statistical classi�ers [7] and General-

ized Vector Quantizers [9] for source-coding applica-

tions. The DA method is based on the interpretation

of a mixture model as a radomized space partition. The

degree of randomization of this partition can be mea-

sured by the Shannon entropy,

H = �
1

N

NX

i=1

X

j

P [jjxi] logP [jjxi]: (4)

We �rst pose the problem of optimizing the regres-

sion cost, D of equation (2), while constraining the

Shannon entropy, H = H0. This constrained optimiza-

tion problem may be written as the minimization of

the corresponding Lagrangian,

min
fP [jjx]g;f�jg

D � TH (5)

where the Lagrange parameter, T is referred to as the

\temperature" to emphasize a compelling analogy to

statistical physics. Equation (5) reminds us of the de�-

nition of the Helmholtz free energy of a thermodynamic

system, where D is the thermodynamic energy of a

physical system, T is the temperature and H is the

entropy. The temperature (Lagrange multiplier) de-

termines a balance of energy (cost) and entropy (ran-

domness). Minimizing the Lagrangian, D � TH, we

minimize the Helmholtz free energy, and in fact, seek

isothermal equilibriumat the given temperature, T . Of

particular importance is the case of T ! 0 which cor-

responds to direct minimization of D, our ultimate ob-

jective. This suggests the possibility of implementing

an annealing process, that is, gradually lowering the

temperature while maintaining the system at thermal

equilibrium. Such a process allows one to avoidmany of

the local minima of the energy D. Since this method

is not a stochastic method like simulated annealing,

but instead based on the optimization of the determin-

istically computed expectation of the Helmholtz free

energy, it is considerably faster.

We initialize the algorithm with a very high value

of T . At this temperature, we must maximize the en-

tropy of associating inputs with regions. The solution

chooses all the probability distributions to be uniform

and all the local models,f�jg to be equal to a single

global model of the data. E�ectively, a single region

would su�ce to represent the entire data. As the tem-

perature is gradually lowered, in steps, optimization is

carried out at each temperature to choose the parame-

ters of the probability distribution and the local model

parameters, f�jg that minimize the Lagrangian. As

T ! 0, the Lagrangian reduces to the regression cost,

D.

2.1. The NRBF structure

In the NRBF architecture,

Pj(x) / e
kx�mjk

2

2�2 (6)

de�nes the association probability which depends on

the relative closeness to each of the \prototypes", fmjg.

Furthermore, f(x;�j) = �j, i.e. we make use of con-

stant local models. To design an NRBF regression

function from the training data, one must optimize the

locations of the prototypes, fmjg and the local models,

f�jg to minimize the regression cost,D. A commonde-

sign approach[8] adopted for the design of NRBF-based

regression functions can be summarized in two-steps :

� Find the prototypes, fmjg that minimizes a clus-

tering (VQ-like) cost in the X space.

� With this initialization for fmjg, use a gradient

descent algorithm on the regression cost, D, of

equation (2) to optimize fmjg,f�jg.

While this algorithm is quick, a signi�cant problem

with it is that despite the heuristically reasonable ini-

tialization that the �rst step o�ers to the second (cost



minimization) step, the method can be easily trapped

in poor local minima on the complex cost surface. We

will demonstrate this problem with some examples in

the next section and show that the DA approach e�ec-

tively overcomes this shortcoming to generate better

regression functions.

2.2. The HME structure

The hierarchical mixture of experts (HME) regression

function is organized as a tree. The leaves of the tree

represent simple local regression models (experts) which

are weighted and combined, as they \traverse" to the

root node, where the �nal regression estimate, g(x)

is computed. As an example, for a simple two-level,

binary-tree HME architecture is 1, the output

g(x) =
X

j

gj(x)
X

k

gkjj(x)f(x;�jk); (7)

where gj(x) / ev
T
j x and gkjj(x) / ev

T
jkx de�ne the

probability distributions. This architecture can be viewed

as a mixture model, where each local model, f(x;�jk)

is selected based on a probability that is the (tree-

structured) product of the probabilities, gkjj(x) and

gj(x).

Jordan and Jacobs[4] suggested the maximization

of the likelihood function (3), as an e�ective method to

design HME regression functions. However, although

this method does sometimes minimize the regression

cost better than gradient descent on the squared-error

cost function, its design objective is mismatched to the

original regression cost. In the results section, we will

demonstrate that our novel DA method signi�cantly

outperforms both likelihood maximization, and gradi-

ent descent on the squared-error cost.

3. RESULTS

We applied our DA-based design method to the HME

and NRBF architectures and compared the average

squared-error performance with those obtained by con-

ventional design methods for each architecture. In this

section, we demonstrate that the DA method clearly

outperforms the Two-step (2ST) method for the NRBF

architecture and outperforms both the maximumlikeli-

hood (ML) and gradient descent (GD) methods for the

HME architecture. The experiments are performed for

di�erent values of K, the number of local models used

for regression. Note that in the case of NRBF regres-

sion functions, K is the number of prototypes and in

the case of binary HME trees with l levels, K = 2l.

1Note that our method is not restricted to binary or two-level

trees. This example is given only for ease of understanding.

Since, for both HME and NRBF structures, the per-

formance of the competing methods depends on the

initialization used, we attempted to remove the bias

introduced due to poor initialization by allowing each

competing method to use ten di�erent initializations

with only the best result obtained among those runs

compared with the result obtained by DA. Since the

regression function obtained by DA is generally inde-

pendent of the initialization, a single DA run will suf-

�ce. Further, in the case of HME regression functions,

we use linear local models.

Our experiments are performed over three bench-

mark examples from the StatLib dataset archive. 2

� The Boston home value prediction prob-

lem : The goal is to use a training set of data

from 506 homes in the Boston area to predict the

median price of each home from 13 features which

are believed to inuence it. Since the features

have di�erent dynamic ranges, we �rst normalize

each feature to unit variance before designing re-

gression functions for them. Results are shown in

tables 1 (a) and (b).

� Prediction of mortality rate : We consider

the prediction of the age-adjusted mortality rate

in a locality from 15 factors that may have possi-

bly inuenced it. Since we have data on only 60

localities, we used the entire dataset for training.

Results are shown in tables 2 (a) and (b).

� Estimation of fat content of meat : The fat

content of meat can be measured by techniques

of analytical chemistry, but it is a slow and time-

consuming process. In this experiment, we used a

dataset of quick absorption measurements 3 and

the corresponding fat content as determined by

analytical chemistry to learn to predict the fat

content from the measurements. The data con-

sists of a training set of size 173 and a test set

of size 43. The results using NRBF and HME

regression functions for the prediction are shown

in tables 3 (a) and (b).

Clearly, for all three examples, the deterministic an-

nealing method outperforms the standard design meth-

ods for both mixture model architectures. Note that,

in table 3(b), allowing the ML approach to use a larger

network size does not necessarily improve the perfor-

mance over the test set, although performance over the

training set improves marginally.

2The StatLib data set archive is accessible on the World-Wide

Web at http://lib.stat.cmu.edu/data sets/ .
3The Tecator Infratec Food and Feed Analyzer measures the

absorption of electro-magnetic waves in 100 di�erent frequency

bands
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K DA 2-Step

1 87.7 87.7

2 19.7 23.78

4 12.9 19.34

6 12.6 13.74

10 6.5 15.72

K DA GD ML

4 5.73 5.88 7.49

8 3.40 3.58 5.59

Table 1: Comparison of average squared-error for the

Boston home data problem using (a) NRBF architec-

ture and (b) the binary HME tree. K is the corre-

sponding network size.

K DA 2-Step

1 3805.12 3805.12

2 1148.82 2154.0

4 720.77 1256.8

6 439.07 566.5

8 299.63 564.5

10 261.42 438.2

K DA GD ML

4 18.2 121.8 70.4

8 2.1 12.3 41.8

Table 2: Comparison of average squared-error for the

environmental data problem using the (a) NRBF ar-

chitecture and (b) the binary-HME tree. K is the cor-

responding network size.

K DA (tr) DA (te) 2-Step (tr) 2-Step (te)

1 159.89 168.25 159.89 168.25

2 52.9 58.8 131.43 159.68

4 28.6 32.9 119.82 137.99

6 27.3 40.1 74.89 83.73

K DA DA GD GD ML ML

(tr) (te) (tr) (te) (tr) (te)

4 8.3 11.5 14.1 18.1 15.1 23.9

8 6.9 9.8 12.8 17.2 12.5 39.7

Table 3: Comparison of average squared-error for fat-

content estimation using (a) the NRBF architecture

and (b) the binary HME tree. K is the number of

basis functions. `tr' and `te' refer to training and test

sets respectively.


