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ABSTRACT

This paper addresses the problem of generalization error
estimation in neural networks. A new early stop criterion
based on a Bootstrap estimate of the generlization error is
suggested. The estimate does not require the network to
be trained to the minimum of the cost function, as required
by other methods based on asymptotic theory. Moreover,
in constrast to methods based on cross-validation which re-
quire data left out for testing, and thus biasing the estimate,
the Bootstrap technique does not have this disadvantage.
The potential of the suggested technique is demonstrated
on various time-series problems.

1. INTRODUCTION

The goal of neural network learning in signal processing is to
identify robust functional dependencies between input and
output data (for an introduction see e.g., [3]). Such learn-
ing usually proceeds from a �nite random sample of training
data; hence, the functions implemented by neural networks
are stochastic depending on the particular available train-
ing set. This opens the question of how robust the learned
functions are to 
uctuation and noise in the training set,
and how well will they perform on new test data. General-
ization is a key topic in the theory of supervised learning,
and signi�cant progress has been reported. The most uni-
versally valid results are due to Murata et al. [5], describing
the asymptotic generalization ability of algorithms that are
continuously parameterized. However, these generalization
error estimators assume that the networks are trained to
the minimum of the training error and that the training set
is large compared to the number of degrees of freedom in
the model.

The overtraining phenomenon is well documented in the
neural network literature. When training a network with
too many resources the network will initially learn the typ-
ical, generic aspects of the problem and then as training
continues it will adapt to increasingly �ner details of the
training data. If the average error on an independent exam-
ple (the generalization error) is monitored one typically ex-
periences an initial decrease of error followed by an increase
when the networks weights are getting too specialized. The
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before mentioned asymptotic theories cannot cope with this
phenomenon, since they are based on assumption that the
network weights are trained to the minimal training error
and that this minimum is close to the \true" weights. Cur-
rent practice prescribes the use of a validation set. However,
this means that data has to be set aside for testing, similarly
the standard cross-validation technique is based on resam-
pling without replacement, hence, the statistics obtained
are biased.

In this contribution we use a Bootstrap resampling plan
to estimate test errors. Bootstrap involves training an en-
semble of networks on training sets resampled from the orig-
inal training set. In contrast to cross-validation, Bootstrap
uses sampling with replacement. Consequently, Bootstrap
can approach the statistics of the learning problem at the
full sample size available. Another complicated test error
estimator based on mixing the concepts of cross-validation
and bootstrap has been suggested in [4]. This estimator
aims at estimating the test error of a bootstrap ensemle of
networks rather than the test error of the individual net-
work.

2. BOOTSTRAP BASED TEST ERROR

ESTIMATE

Let the data set consist of N realted input-output exam-
ples: D = f(xk;yk)g

N
k=1 where x, y are the input and ouput

vectors, respectively. De�ne the cost for neural network
training by �(x;y;w), with w denoting the vector of net-
work weights. In the speci�c case of squared error for a
network implementing the scalar function f(x;w) we have,
�(x; y;w) = (y � f(x;w))

2
. The network is trained by an

iterative scheme such as gradient descent or a Newton based
scheme as to minimize the cost function (or training error)

SD(w) =
1

N

NX
k=1

�(xk;yk;w): (1)

Next we apply the Bootstrap technique, see e.g., [2], [6].
Consider Q resamples of the data set with replacement, Dq ,
q = 1; � � � ; Q. Each set consists of N input-output examples
drawn independently from D with probability 1=N . De�nebwq as the weight estimates obtained when training on the
sets Dq and further de�ne the indicator variable

�kq =

�
1 ; k =2 Dq

0 ; k 2 Dq
(2)



where k = 1; 2; � � � ; N refers to the examples in the data
set D. The training error on D evaluated at bwq can be
expressed as:

1

N

NX
k=1

�(xk;yk; bwq) =
1

N

NX
k=1

(1� �kq) � �(xk;yk; bwq)

+
1

N

NX
k=1

�kq � �(xk;yk; bwq) (3)

Consider a �xed q corresponding to a particular sample of
training data Dq . It is now possible to interpret the two
terms on the right hand side of Eq. (3) as training and
test error, respectively. That is, by performing an ensemble
average over all possible data sets D of size N in Eq. (3) we
get:

1

N

NX
k=1

EDf�(xk;yk; bwq)g =

1

N

NX
k=1

(1� �kq) � EDf�(xk;yk; bwq)g

+
1

N

NX
k=1

�kq �EDf�(xk;yk; bwq)g (4)

where the data set ensemble average is denoted by EDf�g.
Assume that the examples are drawn independently. Eq. (4)
is further reduced by introducing three quantities:

1. The training error

SD(bwq) =
1

N

NX
k=1

�(xk;yk; bwq): (5)

2. The individual training error

SDq
(bwq) =

1

N

X
k2Dq

(1� �kq) � �(xk;yk; bwq): (6)

3. The average generalization error

� = EDfG(bwq))g (7)

where the generalization error is de�ned as

G(bwq) = Ex;yf�(x;y; bwq)g

=

Z
�(x; y; bwq) � p(x;y)dxdy (8)

with p(x;y) denoting the joint (unknown) probability
density of (x;y).

That is, using Eq. (4):

EDfSD(bwq)g =
1

N

NX
k=1

(1��kq)�EDfSDq
(bwq)g+

1

N

NX
k=1

�kq ��

(9)
Finally averaging over all possible con�gurations of resam-
ples gives:

EqfEDfSD(bwq)gg = (1��)EqfEDfSDq
(bwq)gg+�� (10)

where � = (1 � 1=N)N is the average number of examples
in the test set i.e., equal to the probability that a speci�c
example is not used in a resample of size N 1. Aproximating
the average w.r.t. q by the emprical average obtained from
Q replicas, i.e.,

hXi =
1

Q

QX
q=1

X(bwq): (11)

where X is a arbritary variable. Furthermore, we drop the
average w.r.t. di�rent data sets2.

Finally, the relation becomes:

hSD(bwq)gi � (1� �)hSDq
(bwq)i+ �� (12)

That is,

� �
hSD(bwq)gi � (1� �)hSDq

(bwq)i

�
(13)

3. EXPERIMENTAL RESULTS AND

CONCLUDING REMARKS

While the generalization error estimate can be used for op-
timization of all aspects of neural net adaptation, including
tuning of regularization parameters or selection of network
architecture, we will here focus on it's use in the early stop
context. This is a problem that can not be solved by the
conventional statistical estimates like the that of Murata
et al. [5], since these estimates assume the network to be
close to optimal (i.e. within a second order Taylor expan-
sion). Early stop is oldest form of regularization, used in
many practical implementations, and also subject to some
analysis, see e.g., [7]. The idea is simply to inspect the
test error on an independent set of validation data, when
the validation error start to increase training is stopped to
avoid over�tting.

For illustration, we use two time series problems. The
�rst case involves the prediction of a noisy time series ap-
pearing in a functional neuroimaging context. We show the
early stop scenario for two di�erent levels of regularization.
The series consist of a stimulus series (an on-o� signal) and
a response series from a speci�c region in the visual cortex.
The network is trained to model the response by one-step
prediction of the response series using a simple lag-space in-
put from both stimulus a response series. The training set
consists of 250 input-output pairs, while another set of 200
datapoints are used for evaluation the unbiased test error.
All errors are normalized by the total variance of test and
training series. Signi�cant overtraining is seen and indeed
expected with a low level of the weight decay, whereas by
using the generalization error estimate we may hinder over-
training e�ciently as shown in Fig. 1. In Fig. 2 we similarly
show the result of training with a somewhat higher weight
decay. In this case the minima in the test error and the
test error estimate are rather shallow, but they do indeed
coincide.

1Note that � ! e�1 for N ! 1 where e is the base of the
natural logarithm.

2This is identical to the technique in order to derive the FPE
[1] or NIC criteria [?].



Our second case is the wellknown sunspot prediction
problem. The task is to predict the yearly average sunspot
activity. We follow the conventional approach and use 12
input units encoding a simple lag-space, while the output
unit predicts next years activity (see e.g. [8] for details on
the sunspot prediction problem). The total series runs from
1700 to 1979. The 209 member training set covers 1700-
1920, while we use the socalled test set I (1921-1955) to
compute the test error. Like in the �rst case the aim is to
eliminate over�tting. First we train an oversized network
with eight hidden units and low regularization (just anough
to stabilize our Newton optimizer). The training scenario is
depicted in �gure Fig. 3 and indeed signi�cant overtraining
is seen at training beyond 15 iterations. Also, we here train
a well-regularized network (see �gure Fig. 3). In this case
there is virtually no overtraining, neither measured by the
unbiased generalization error test set or by our bootstrap
test error estimate. Hence, we conclude that the Bootstrap
ensemble based estimate of the test error is a viable means
for implementing an early stop rule.
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Figure 1: Overtraining scenario with small regularization
(weight decay). The data set is a very noisy forecasting
problem involving a stimulus series and a response series
(the series was recorded in a functional neuroimaging ex-
periment). The data set comprises N = 250 examples and
an additional test set contains 200 examples. The Boot-
strap ensemble had Q = 15 members. Each member is
a feed-forward net with 20 input units, 8 hidden sigmoid
units, and one output unit. The networks were trained by
conventional backprop (1 � itr � 5), and by a second or-
der pseudo Newton scheme (6 � itr � 45). The goal is
to predict the noisy time series one-step-ahead based on a
lag space of 10 previous values of the time series and 10
lagged values of an auxiliary time series coding the stimu-
lus. In this run the network was only slightly regularized by
weight decay. Errors are reported as normalized by the to-
tal variance of the series. Note that both the estimated and
the measured test error suggest to stop training at around
itr = 12.
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Figure 2: Overtraining scenario with near optimal regu-
larization (weight decay). The data set and the networks
are the same as in Fig. 1. In this case the network was
more heavily regularized by weight decay. Note that both
the estimated and the measured test error suggest so stop
training around itr = 15. Note also that the overall level of
test error is lower in this case, suggesting that careful con-
trol of the weight decay may be more e�cient than early
stop in optimizing generalization.

4. CONCLUSIONS

A technique for early stop has been presented. Training
is terminated when a new Bootstrap based estimate of the
generalization error has reached its minimum. Numerical
examples showed excellent coherence among the Bootstrap
based estimate and the test error on an independent test
set. Furthermore, the numerical examples showed that one
can not rely on early stop only; additional regularization (in
the present case, weight decay) is necessary for achieving
minimum generalization error.
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Figure 3: Overtraining scenario with large network and
small regularization (weight decay). The data set is the
wellknown sunspot prediction problem. The data set com-
prises N = 209 examples and an additional test set con-
tains 35 examples. The Bootstrap ensemble had Q = 15
members. Each member is a feed-forward net with 12 in-
put units, 8 hidden sigmoid units, and one output unit.
The networks were trained by conventional backprop (1 �
itr � 5), and by a second order pseudo Newton scheme
(6 � itr � 45). The goal is to predict the noisy time series
one-step-ahead based on a lag space of 12 previous values
of the time series. In this run the network was only slightly
regularized by weight decay. Errors are reported as nor-
malized by the total variance of the series. Note that both
the estimated and the measured test error suggest to stop
training at around itr = 12.
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Figure 4: Overtraining scenario with a large network and
near optimal regularization (weight decay). The data set
and the networks are the same as in �gure Fig. 3. Note
that both the estimated and the measured test error suggest
so stop training around itr = 15. Note also that like in
the previous neuroimaging case, �gures Fig. 1 - Fig. 2, the
overall level of test error is lower in this case, suggesting that
careful control of the weight decay may be more e�cient
than early stop in optimizing generalization.


