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ABSTRACT

The recurrent canonical piecewise linear (RCPL) network
is applied to nonlinear blind equalization by generalizing
Donoho's minimum entropy deconvolution approach. We
�rst study the approximation ability of the canonical piece-
wise linear (CPL) network and the CPL based distribution
learning for blind equalization. We then generalize these
conclusions to the RCPL network. We show that nonlinear
blind equalization can be achieved by matching the distri-
bution of the channel input with that of the RCPL equalizer
output. A new blind equalizer structure is constructed by
using RCPL network and decision feedback. We discuss
application of various cost functions to RCPL based equal-
ization and present experimental results that demonstrate
the successful application of RCPL network to blind equal-
ization.

1. INTRODUCTION

Blind equalization refers to the problem of determining the
transmitted symbol sequence in the presence of intersym-
bol interference (ISI) and noise without using a training se-
quence. Most of the existing blind techniques such as Buss-
gang algorithm, cyclic spectrum approach, and polyspec-
tra approach, are based on the linear channel assumption.
There are many cases, however, where this assumption is
not true, as nonlinear devices signi�cantly contribute to
system degradation. One example is the digital satellite
link [4], in which both the earth station and the satellite
are equipped with ampli�ers operated in a nonlinear region
of the input-output characteristics for better exploitation of
the power of the device. The use of the above blind tech-
niques will su�er from a severe performance degradation
for unknown nonlinear communication channels and hence
the development of nonlinear blind equalization techniques
carries particular signi�cance.
In this paper, we consider application of recurrent canon-

ical piecewise linear (RCPL) network to nonlinear blind
equalization by generalizing Donoho's minimum entropy
deconvolution approach [6] to the nonlinear case. We
�rst study nonlinear �ltering by canonical piecewise linear
(CPL) network. Then, the corresponding conclusions are
generalized for the RCPL network. We show that nonlin-
ear blind equalization can be achieved by matching the dis-
tribution of the channel input with the distribution of the
output of the RCPL equalizer. A new blind equalizer struc-
ture is constructed by using RCPL network and decision
feedback. Application of various cost functions for RCPL
network based equalizer is discussed and it is shown that
the blind algorithm derived based on the combined Godard
[7] and Vembu's convex [10] cost functions exhibits good
tradeo� in terms of robustness and low equalizer prediction
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error. The developed blind algorithm exhibits much faster
convergence than those based on the Godard cost function
or the Vembu's convex cost function alone. Simulation re-
sults are also presented to show that the RCPL network
based decision feedback equalizer (RCPL-DF) outperforms
both the linear decision feedback equalizer (linear-DF) and
the CMA equalizer when equalizing a nonlinear channel.

2. NONLINEAR FILTERING BY CPL
NETWORK

Canonical piecewise linear (CPL) network is initially in-
troduced for nonlinear circuit analysis [5]. CPL structures
provide a desirable compromise between the approximation
ability of nonlinear models and the e�ciency and theoretical
accessibility of the linear domain, and reduce the parameter
storage requirement of piecewise linear models considerably
by employing a global linear representation. By using a
piecewise linear �lter, we can use standard linear adaptive
�ltering techniques to perform training tasks and can easily
incorporate known statistical information into the network
structure.

The CPL function is de�ned as [5]:
De�nition 1 (Canonical Piecewise Linear (CPL) Func-
tion): A piecewise linear function f : D ! Q, with a com-

pact subset D � RN and compact subset Q � RM , is called
a canonical piecewise linear (CPL) function, if it can be ex-
pressed by a global representation:

f(x) = a+Bx+

�X
i=1

ci jh�i;xi+ �ij (1)

where B 2 RM�N ;a; ci 2 RM ; �i;x 2 RN and �i 2 R.
Based on the above de�nition, we show the approximation
ability of CPL network by the following theorem:

Theorem 1: Let domain D be a compact space of dimen-
sion N and F be a set of canonical piecewise linear functions
on D. Then, for any continuous function �f on D, there ex-
ists a function f 2 F such that jf(x) � �f(x)j < � for all
x 2 D.

Proof of the theorem is given in [3]. Hence, in application
of the CPL network to equalization, we can represent any
nonlinear channel as a CPL function, and if we use a CPL
network as an equalizer, then, the global system, cascade of
nonlinear channel and the equalizer is still a CPL function
since the class of CPL functions is closed.
To show the ability of CPL network to achieve blind

equalization, we �rst introduce the following: The non-
linear channel h(�) maps the input sequence x(n) 2 
 to
y(n) = h(x(n); x(n � 1); � � � ; x(n � 1 � p)) and the CPL



equalizer aims to recover the input sequence by construct-
ing a mapping heq : D ! 
 where D � Rk and 
 � R.
Assume that the global system, cascade of the nonlinear
channel h(�) and the CPL equalizer heq(�) is denoted by T ,
and is modeled by a CPL network which divides the input
space into m disjoint regions, R1;R2; � � � ;Rm, and in each
region Ri, the CPL function given in (1) is equivalent to
the following linear model:

Mi : ~x(n) =

kX
j=1

wijxj(n) (2)

where xj(n) � x(n � j + 1) and ~x(n) is the output of the
equalizer.
We then make the following assumptions:

(i) Input sequence fx(n)g is an i.i.d. random process with
distribution �.
(ii) The distribution � is symmetric with �nite variance.
(iii) For each model Mi, there exists at least a subset I � 


and a region Ri, ~I = I1 � I2 � � � � Ik � Rj such that the

mapping: ~x(t) =
Pk

j=1
wijxj(t) is a ~I onto I mapping and

� =
R
I+I0

d�x =
R
Ij+Ij

0
d�x = �j; j = 1; 2; � � � ; k where I 0 is

the symmetric set of I.
We then show the following:

Theorem 2: Consider the global system T = F(S). We
assume that fx(n)g is an i.i.d. process with distribution �
and assumptions (i), (ii), and (iii) are satis�ed. If the dis-
tribution of f~x(n)g is still �, then, the global system T is
identity except for a possible delay and a sign factor.

Proof: Since fx(n)g and f~x(n)g have the same distribution
and � is symmetric, then, E fx(n)g = E f~x(n)g = 0 andZ

I+I0

x
2
d�x =

Z
~I+~I0

~x2d�~x

=

Z
I1+I1

0

� � �

Z
Ik+Ik

0

~x2d�x1d�x2 � �d�xk

where I 0 � �I, ~I 0 � (�I1) � (�I2) � � � � (�Ik). Then, by
(2), we can write

Z
I+I0

x
2
d�x =

kX
j=1

Z
I1+I1

0

� � �

Z
Ik+Ik

0

wij
2
xj

2
d�x1d�x2 ��d�xk

which by using assumption (iii) gives,

�I
2 =

kX
j=1

wij
2
�j�j

2

where �I
2 �

R
I+I0

x2d�x, �j
2 �

R
Ij+Ij

0
x2d�x, and �j �Qk

l6=j
�j. Let j � �j�j

2=�I
2, we have

kX
j=1

wij
2
j = 1: (3)

Let f and fj be the characterization functions [11] of x(n)
on I + I 0 and Ij + Ij

0 respectively. By the de�nition in (2),
we have

f(�) =

kY
j=1

fj(wij�): (4)

Let g = jf j and gj = jfjj . From (4), g(�) =
Q

k

j=1
gj(wij�):

Setting  (�) = � ln g(�)=�2 and  j(�) = � ln gj(�)=�
2, we

have  (�) =
P

k

j=1
wij

2 j(wij�) which can be rewritten as

kX
j=1

wij
2[j (�)�  j(wij�)] = 0 (5)

by using (3). It follows from (5) that, for any � , there exists
at least one wij, such that j (�) �  j(wij�) � 0: Then,
we get

j �
 j(wij�)

 (�)
=

ln gj(wij�)

ln g(�)

1

wij
2

Since � = g(0), �j = gj(0), and � = �j by assumption (iii),
as � goes to zero, we have

j �
1

wij
2
: (6)

From (3), we know that (6) holds if and only if k = 1. Thus,
for each modelMi, there exists only one non-zero coe�cient
wiji such that w2

iji
= 1 and ~x(n) = wijixj(n � ji + 1).

Because of the continuity of the global CPL model, for any
two models Mi1 and Mi2 that have a common boundary,
we have wiji1

xj(n� ji1 +1) = wiji2
xj(n� ji2 +1): Since n

is varying, the above equality is true if and only if wiji1
=

wiji2
and ji1 = ji2 . Therefore, for all the models Mi, the

time delay index ji must be the same. This completes the
proof of the theorem. 2

In the next section, the above conclusions are generalized
to the RCPL network.

3. NONLINEAR BLIND EQUALIZATION BY
RCPL NETWORK

We have introduced RCPL network in [9] and have shown
that RCPL structure provides savings in computation and
implementation, especially when required to model strong
nonlinearities. Since RCPL network also employs feedback,
it has a distinct dynamic behavior which is completely dif-
ferent from that attained by the use of �nite duration im-
pulse response feedforward structures. The RCPL function
is de�ned as [9]:

De�nition 2 (Recurrent Canonical Piecewise-Linear Func-
tion): A function f : D1 �D2 � I ! Q with sample space

D1 � RN , D2 � Rr , index set I, and compact subset
Q � RM is said to be a RCPL function if it can be ex-
pressed by the global representation:

f(x(n);u(n)) = a+B1x(n) +B2u(n) (7)

xk(n) = ak + b
T
1kx(n� 1) + b

T
2kf(x(n� 1);u(n� 1))

+bT3ku(n) +

�X
i=1

ckij h�1ki; x(n� 1)i

+ h�2ki; f(x(n� 1);u(n� 1))i+ h�3ki;u(n)i+ �kij (8)

where x;b1k; �1ki 2 RN , u;b3k; �3ki 2 Rr , a;b2k; �2ki 2
RM , B1 2 RM�N , B2 2 RM�r, ak; cki; �ki 2 R, and
k = 1; 2; � � � ;N . xk is the kth element in x. We refer to
the structure de�ned by (7) and (8) as the recurrent canon-
ical piecewise linear network.

By comparing de�nitions 1 and 2, we can see that RCPL
�lter is actually a special case of the CPL �lter. The RCPL



�lter partitions the input signal space into �nite disjoint
regions and in each region, it can be represented by a FIR
�lter with in�nite length. Therefore, the result presented
in Theorem 1 also holds for the RCPL �lter. Hence, any
nonlinear channel can be represented as a RCPL function.
Furthermore, if we use RCPL network as an equalizer, then,
the global system which consists of the channel and equal-
izer is still a RCPL function. Let the global system T
be a RCPL network and input variable fx(n)g be an i.i.d.
random variable with symmetric distribution �. Then, we
have the same conclusion given in Theorem 2 also for the
RCPL �lter. Thus, for blind equalization, we can update
the weights of RCPL equalizer in such a way that the in-
stantaneous distribution of the output ~x(n) of the equalizer
converges to the input distribution �. Several cost functions
such as moment error cost function [8], Godard/Sato cost
function [7], Vembu's convex cost function [10] and partial
likelihood cost function [1], [2] can be used for distribution
matching. However, moment error cost function is not a
consistent function, especially in the nonminimum phase
case [3]. We have shown that partial likelihood cost func-
tion can be successfully used for blind equalization of binary
communication channels [9]. Godard/Sato cost function is
not a convex cost function and the derived blind algorithm
may only �nd a local minimum. However, if proper ini-
tial weights are chosen, the algorithm can reach the global
minimum and the equalizer prediction error tends to zero.
Thus, the resulting blind equalizer has larger stable margin.
Vembu's convex cost function can help the algorithm to �nd
the global minimum for linear channels and the equalizer to
achieve the correct decision boundary however, it results in
larger residual prediction error after convergence. Although
we can not show that Vembu cost function is also a convex
cost function for the nonlinear channel, it may help us to
�nd an initial proper region in the weight space for the
search, facilitated by the piecewise linear structure of the
RCPL network. In the next section, we present application
of the Godard and Vembu cost functions for equalization
with the RCPL network and derive a blind algorithm based
on both the Godard and Vembu cost functions, such that
initially Vembu cost function is used in the learning pro-
cess and when the absolute gradient of Godard error change
becomes small, adaptation is switched to the Godard cost
function.

4. IMPLEMENTATION OF BLIND
ALGORITHM

We introduce decision feedback to the RCPL network which
results in the �nal RCPL-DF equalizer structure shown in
Figure 1. The decision feedback (DF) structure provides
better performance especially when the channel character-
istics involves nonminimum phase multipath components.
This improvement in performance is also demonstrated by
our simulation studies. The dynamics of RCPL-DF equal-
izer given in Figure 1 can be described by the following set
of equations:

zk(n) = !k0(n)x̂(n� 1) +

MX
i=1

!ki(n)x̂i(n� 1)

+

NX
i=1

!ki+M (n)y(n� i+ 1) +

QX
i=1

!ki+M+N (n)�x(n� i);

x̂k(n) = fk(zk(n)); k = 1; 2; � � � ;M; �x(n) = q(x̂k(n));

x̂(n) =

MX
i=1

!0i(n)x̂i(n) +

NX
i=1

!0i+M (n)y(n� i+ 1)

+

QX
i=1

!0i+M+N (n)�x(n� i) (9)

where y(n) is the observed channel output corresponding
to the transmitted signal x(n) which takes values from a
�nite set S, x̂(n) is the output of a unit trained to approx-
imate x(n), �x(n) is the signal after the decision function
q(�), and fk(�) is a piecewise-linear function. If we choose
the functions fk(�) as

fk(zk(n)) = jzk(n) + 1j � jzk(n)� 1j k = 1; 2; � � � ;M

for the Godard cost function Jg(n) and Vembu's cost func-
tion Jv(n):

Jg(n) = E fjx̂(n)jp � Rpg ;Rp =
E
�
jx(n)j2p

	
E fjx(n)jpg

; p = 1; 2; � � �

Jv(n) = E fjx̂(n)jrg ; r = 2; 3; � � �

a learning algorithm can be obtained by steepest descent
minimization of these cost functions:

w0(n+ 1) = w0(n) + �1e(n)x(n) (10)

wk(n+ 1) = wk(n) + �2e(n)!0kvk(n)�x(n� 1) (11)

wheree(t) = eg(t) if jeg(t)j < �; else e(t) = ev(t)

eg(n) = sgn(x̂(n))jx̂(n)jp�1(Rp � jx̂(n)jp)

ev(t) = r sgn(x̂(n))jx̂(n)jr�1

vk(n) = sgn(zk(n) + 1) � sgn(zk(n)� 1)

where �xT (n � 1) = [x̂(n � 1);x(n � 1)], xT (n) =
[x̂(n); x̂1(n); � � � x̂M(n); y(n); � � � ; y(n � N + 1); �x(n �
1); � � � ; �x(n � Q)], wj(n) = [!j0; !j2; � � � ; !jN+M+Q], j =
0; 1; � � � ;M , and �1, �2 are the learning rates.
As an example, consider the nonlinear communication

channel g(n) = gl(n) + 0:1gl(n)
2 where the nonminimum

phase multipath component is given by gl(n) = 0:9�(n) +
�(n � 1). The input x(n) takes values form the binary set
S = f�1; 1g and has a symmetric distribution. We choose
M = 3, N = 5, Q = 3, p = 2, r = 4. Figure 2 shows
the probability of decision error of RCPL-DF equalizer for
Vembu, Godard, and the equalizer given by (10){(11), the
combined Godard and Vembu cost functions. Here, input
signal to noise ratio (SNR) is 25 dB, � = 15, �1 = 0:001,
�2 = 0:01 for the Godard cost function and �1 = 0:00006=r,
�2 = 0:005=r for the Vembu cost function. The mean square
error (MSE) and bit error rate (BER) curves for the same
three equalizers are shown in Figure 3. We can see that
the blind algorithm based on the combined cost function is
faster than the ones based on the Godard or Vembu cost
function alone. However, after convergence, all three ex-
hibit comparable BER performance. It is also important to
note that the algorithm convergence is much faster when the
multipath component gl(n) is chosen as minimum phase.
Figure 4 shows the BER curve after 8000 iterations for the
same channel for CMA, linear-DF, and RCPL-DF equaliz-
ers using the Godard cost function. The length of the linear
�lters is chosen as 15 and the length of the DF section for
the RCPL-DF and linear-DF equalizers as 3. As observed
in the �gure, the linear CMA equalizer exhibits very poor
performance for the given nonlinear channel while both the
RCPL-DF and linear-DF achieve quite satisfactory equal-
ization with RCPL-DF outperforming the linear-DF equal-
izer. All the simulation results presented are averaged over
25 independent runs. It is also worth noting that the linear-
DF equalizer can be also regarded as a special case of the
RCPL equalizer and the results we present in this paper
can be extended to this equalizer structure.
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Figure 1. Decision feedback-RCPL equalizer struc-
ture
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Figure 2. Convergence curves for the RCPL equal-
izer for the three cost functions
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Figure 3. MSE and BER curves for the RCPL
equalizer for the three cost functions
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Figure 4. BER curves for linear (CMA), linear-
DF, and RCPL-DF equalizers using Godard cost
function


