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ABSTRACT

An adaptive on-line learning method is presented to facil-
iate pattern classi�cation using active sampling to identify
optimal decision boundary for a stochastic oracle with mini-
mum number of training samples. The strategy of sampling
at the current estimate of the decision boundary is shown
to be optimal in the sense that the probability of conver-
gence toward the true decision boundary at each step is
maximized, o�ering theoretical justi�cation on the popu-
lar strategy of category boundary sampling used by many
query learning algorithms. Analysis of convergence in dis-
tribution is formulated using the Markov chain model.

1. INTRODUCTION

Pattern recognition via active sampling can trace its roots
to statistical experiment design where performing an exper-
iment (acquiring one training sample) may incur signi�cant
cost.

A number of active learning strategies, based on the
concept of optimal experiment design, as well as importance
sampling have been reported ([1, 2, 3, 4, 5, 6]). References
[1] and [2] focused on active learning for pattern classi�-
cation applications, with a common heuristic to sample at
or near the present estimate of the category boundary us-
ing a justi�cation that the function approximation of the
posterior probability is most uncertain near the category
boundary.

In this paper, we examine the validity of this argument
using a two-class pattern classi�cation problem as an exam-
ple. We show that the variance of the approximation error
reaches its maximum at the true category boundary.

Based on a stochastic oracle model, we show that the
strategy of sampling at the present estimate of category
boundary is optimal by using a perceptron-like learning al-
gorithm. This result o�ers a direct theoretical justi�cation
of the \sample-at-current-boundary" strategy.

Convergence toward the true decision boundary is an-
alyzed using the Markov chain model to prove the conver-
gence in distribution.

2. PROBLEM FORMULATION

In a two-class pattern recognition problem, the feature vec-
tor x 2 < and the class label C 2 f0; 1g are random vari-
ables with conditional probability density function fxjC(x j
C = i) = fi(x), and prior probability P (C = i) = �i, where
i = f0; 1g. We also denote the posterior probability that
C = i given x is

qi(x) = PfC = i j xg =
�ifi(x)

�0f0(x) + �1f1(x)
; i = 0; 1:

Since q0(x) = 1�q1(x), for simplicity, we shall denote q1(x)
by q(x) in the rest of this paper.

The set of points B = fx j q0(x) = q1(x) = 1=2g is
called the decision boundary. In general, B may contain
more than one point. In this work, we are mainly interested
in applications where B contains exactly one point. This
will be the case if, say, we are doing �ne-tuning of a local
decision boundary.

In an active learning (also known as query learning, [7])
problem formulation, the set of training samples are not
given. Instead, a \learner" (the classi�cation algorithm)
will sample a feature vector x and present to an oracle (by
performing an experiment or running a simulation) to learn
the corresponding class label of x. In a two-class pattern
recognition problem, this is equivalent to the evaluation of a
function y(x) at a speci�c value of x. The oracle will return
y(x) = 1 or y(x) = 0 as the class label associated with x

according to the posterior probability PfC = 1 j xg = q(x)
and PfC = 0 j xg = 1� q(x).

For x � w
� (w� is unknown to the learner) q(x) ! 1

and the oracle will most likely return y(x) = 1, while for
x� w

�, it will most likely return y(x) = 0. For x � w
�, it is

equally likely for the oracle to return y(x) = 0 or y(x) = 1.

3. MINIMUM ERROR ACTIVE LEARNING

To devise a learning rule that learns the optimal decision
boundary w

� using active learning, let us de�ne a 0{1 loss
function L(y(x); f(w; x)) = [y(x)�f(w;x)]2 = [y(x)�u(x�
w)]2, where u(x) = 1 if x > 0 and u(x) = 0 if x < 0. That
is, if f(w; x) and y(x) have the same value for a given x,
then the loss is 0. Otherwise, the loss is 1. Then, a cost



0

0:5

1

�4 �2 0 2 4

q(x)

input, x

Two-class problem, q(x) = PfC = 1 j xg

q(x)

Figure 1: Two-class problem, q(x) = PfC = 1 j xg

function as the conditional risk given x can be de�ned as:

Cost(x) = E[[y(x)� f(w; x)]2 j x]

= Pfy(x) = 1 j xg � [1� u(x� w)]2

+Pfy(x) = 0 j xg � [0� u(x�w)]2

= q(x) � [1� u(x�w)] + (1� q(x)) � u(x� w)

=
n
1� q(x) x > w

q(x) x < w
(1)

Since Cost(x) is not di�erentiable with respect to the
decision boundary w, we use an adaptive formula similar to
that of the classical perceptron learning algorithm:

wn+1 = wn � [�(y(xn)� 0:5)] (2)

where � is the learning rate, a.k.a. step size, and the new
estimate of the boundary moves to the left or right by �=2
depending on the sample output y(xn) at the next sampling
of xn. Note that E[y(w

�)] = 0:5.
From (2),

jwn+1 �w
�

j = jwn � w
�

j �
�

2
: (3)

The algorithm will move toward convergence in the present
step if jwn+1 � w

�
j = jwn � w

�
j �

�

2
.

Let

Pe = Pfjwn+1 � w
�

j = jwn � w
�

j+
�

2
j wng (4)

be the probability of error of moving away from the true
boundary, in the one-step move described in (2).

Theorem 1 The new sample xn which minimizes the max-

imum possible value of Pe over each possible wn is xn = wn.
Moreover, if xn = wn, then

Pe < 0:5 (5)

Proof 1 From (4),

Pe = Pfjwn+1 � w
�

j = jwn � w
�

j+
�

2
j wng

= Pfy(xn) = 0 j wn > w
�

g � Pfwn > w
�

g

+Pfy(xn) = 1 j wn < w
�

g � Pfwn < w
�

g (6)

The event y(xn) = 0 given xn and the event wn > w
�

are independent, hence

Pfy(xn) = 0 j wn > w
�

g = Pfy(xn) = 0g

= 1� q(xn) (7)

Pfy(xn) = 1 j wn < w
�

g = Pfy(xn) = 1g

= q(xn) (8)

Thus (6) becomes

Pe = (1� q(xn)) � Pfwn > w
�

g+ q(xn)Pfwn < w
�

g (9)

If wn > w
�, to minimize Pe, one would want to mini-

mize the term 1 � q(xn) by choosing xn where q(xn) is as

large as possible, i.e., where xn is as large as possible. Con-

versely, if wn < w
�, one would choose xn such that xn is

as small as possible.
Since we have no knowledge on Pfwn > w

�
g or Pfwn <

w
�
g, we opt to use the min-max criterion to minimize the

maximum probability value of Pe regardless of whether wn >

w
� or wn < w

�.
In particular, we note that when wn < w

�, choosing

xn < wn will run into the risk of xn < w
�, which implies

Pe = 1 � q(xn) > 0:5. Only for xn � wn is it guaranteed

that Pe < 0:5. Similarly, when wn < w
�, only for xn � wn

does it guarantee that Pe < 0:5.
Taking the intersection of the two sets, fxn � wng and

fxn � wng, one concludes that xn = wn is the only solution

which guarantees that Pe < 0:5. Thus (5) is proved.

This theorem establishes that, with a min-max crite-
ria, the optimal active learning strategy for the two-class
pattern classi�cation problem is to sample at the current
estimate of the category boundary wn. Thus (2) becomes

wn+1 = wn � [�(y(wn)� 0:5)] (10)

4. CONVERGENCE ANALYSIS

In this section we show that the learning algorithm (10)
converges in distribution toward the true boundary w

� us-
ing a Markov chain model.

Given an initial condition w0, if � is constant, then the
set of random variables fwng in (10) constitute a Markov
chain,

w(k) = w0 + k
�

2
(11)

where k is any integer, and w(k) denotes the boundary es-
timate wn which falls in the state k of the Markov chain.
We also de�ne the state k� to be the state closest to w�.

Given wn = w(k), the output of the sampled value
y(wn) dictates the state transition probability from state
k to the next state k0, wn+1 = w(k0). In particular,

Pfwn+1 = w(k0) j wn = w(k)g =8>>>><
>>>>:

Pfy(wn) = 1 j wn = w(k)g = q(w(k))
if k

0 = k � 1;
Pfy(wn) = 0 j wn = w(k)g = 1� q(w(k))

if k
0 = k + 1;

0
if jk

0
� kj 6= 1:

(12)



Since we are �ne-tuning local boundary within a region
as noted in section 2, the state space have bounds, thus it
is considered to have �nite number of states, kL � k � kU ,
where kL and kU are the lower and upper bounds, respec-
tively.

Let T (i j j) be the notation for the transition probability
from state j to i, i.e.,

T (i j j) = Pfwn+1 = w(j) j wn = w(i)g:

Also de�ne T (n)(i j j) as the transition probability of mov-
ing from state j to i in n steps. By induction, it can be
shown that

T
(m+n)(i j j) =

X
k

T
(m)(k j j)T (n)(i j k) (13)

Lemma 1 Given a state i, the transition probability for the

next state j = i� 1 satis�es

T (j j i) > 0:5 jw(j)�w
�

j < jw(i)�w
�

j (14)

T (j j i) < 0:5 jw(j)�w
�

j > jw(i)�w
�

j (15)

Proof 2 From (11), we note that

w(i+ 1) > w(i) > w(i� 1):

When w(i) > w
�, then w(i+1)�w� > w(i)�w� > w(i�

1)�w� � 0 and jw(i+1)�w�j > jw(i)�w�j > jw(i�1)�w�j.
From (12), and since q(w(i)) > q(w�) = 0:5,

T (i+ 1 j i) = 1� q(w(i)) < 1� q(w�) = 0:5;

then

T (i� 1 j i) = 1� T (i+ 1 j i) > 0:5

When w(i) < w
�, then w(i�1)�w� < w(i)�w� < w(i+

1)�w� � 0, so jw(i�1)�w�j > jw(i)�w�j > jw(i+1)�w�j.
from (12), and since q(w(i)) < q(w�) = 0:5,

T (i� 1 j i) = q(w(i)) < q(w�) = 0:5;

then

T (i+ 1 j i) = 1� T (i� 1 j i) > 0:5

This proves that the transition probability toward the

true boundary is always greater than 0.5, and the probability

away from the boundary is always less than 0.5.

De�nition 1 A set of states A is closed if

T (A j k) = 1 8k 2 A

De�nition 2 A chain is indecomposable, if there is no two

or more disjoint subset of states that are closed.

Lemma 2 For an indecomposable �nite-state Markov chain

with transition probabilities such that there is non-zero prob-

ability of reaching any state, then for any set of states A

there is one solution T (A) for all starting states k0 that

lim
n!1

T
(n)(k j k0)! T (k) 8k 2 A

This Markov chain is called regular or stable. Full de-
scription of Markov chain and its convergence proof may be
referred in [8, 9].

Theorem 2 The learning method (10) with constant � and

bounded region converges toward an asymptotic probability.

Proof 3 We only have to prove that (11) constitutes a reg-

ular Markov chain.

A transition moving toward w� is possible for all states.

This can be shown by noting that one possible path from a

state k to a state k� de�ned to be closest to the true bound-
ary w

� is to always move toward state k
� without moving

away, and the probability is(Q
k
�
+1

i=k
T (i� 1 j i) when k > k

�Q
k
�
�1

i=k
T (i+ 1 j i) when k < k

�

(16)

which is > 0, from (14).

This chain is indecomposable. This is proven by noting

that any state can reach w
�, which are then part of the

subset of states which includes w
�. If there were to exist

a state that is not an element of that subset, it can never
reach w

�, contradicting the above statement.

Clearly the learning method above satis�es the criteria

for a regular Markov chain, which proves its convergence in

distribution toward the asymptotic probability.

Lemma 3 If a Markov chain is regular, for any set of

states A the proportion of time the system spends in A goes

to the asymptotic probability T (A).

Let Nn be the number of times the system spends in
state k up to time n, then using the central limit theorem,
as n ! 1, P (jNn

n
� T (k)j < �) = 1 for every arbitrary

� > 0 for all k, which is called the weak law of large numbers
([8, 9]).

This shows an important corollary:

Corollary 1 In n moves, as n becomes large, the state i is

reached nT (i) times, and the transition from i to j occurs

nT (j j i)T (i) times.

Theorem 3 Let w1 = limn!1 wn, then

Pfw1 = w
�

g > Pfw1 = w
0

g 8w
0

6= w
� (17)

Proof 4 We use the Markov chain model (11) and its tran-

sition probabilities T (i j j).
First, given two states i and i + 1, in n steps, if there

are m number of transitions from i to i+1, then the number

of transitions from i+1 to i must di�er from m by at most

1. This can be proved by looking at the transitions that
cross between i and i+ 1. A second transition in the same

direction can only occur if a matching transition in the other

direction has already occurred.

From Corollary 1, the number of times spent in the tran-

sition between i and i+ 1 approaches

nT (i+ 1 j i)T (i) = nT (i j i+ 1)T (i+ 1) + �;



where � 2 f�1; 0; 1g.
As n!1, term � drops out, and cancelling out n and

rearranging, we get

T (i) =
T (i j i+ 1)

T (i+ 1 j i)
T (i+ 1) (18)

Since from (14) and (15), when i > k
�, T (i j i + 1) > 0:5

and T (i+ 1 j i) < 0:5,

T (i j i+ 1)

T (i+ 1 j i)
> 1;

thus
T (i) > T (i+ 1) 8i > k

�

and since i > k
�,

T (k�) > T (i) 8i > k
�

:

When i < k
�, again from (14) and (15), T (i j i+ 1) <

0:5 and T (i+ 1 j i) > 0:5,

T (i j i+ 1)

T (i+ 1 j i)
< 1;

thus

T (i) < T (i+ 1) 8i < k
�

and since i < k
�,

T (i) < T (k�) 8i < k
�

:

Combining both, we have

T (k�) > T (i) 8i 6= k
�

:

Since T (k�) is equivalent to Pfw1 = w
�
g, this proves

(17).

The above formulation thus proves the convergence in
distribution of the \Sample-at-current-Boundary" learning
algorithms toward the true boundary point w�.

5. CONCLUSION

Active learning in a stochastic environment re
ects the method
of estimating the learning model given existing samples,
then querying new samples that may optimize the estima-
tion process, and iterate this process.

It is theoretically shown that sampling near the bound-
ary is the optimal way for active learning in a stochastic
environment.

Convergence analysis is done using the Markov chain
model to prove that the method converges toward the true
decision boundary in distribution.
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