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ABSTRACT

This paper proposes a generalized nonlinear minor com-
ponent analysis algorithm. First, we will prove that with
appropriate nonlinear functions the proposed algorithm
can extract adaptively the minor component. Then we
will discuss how to choose the related nonlinear func-
tions so as to guarantee the desired convergence. Fur-
thermore, we will show that all the other available minor
component analysis algorithms are special cases of this
proposed generalized algorithm. Finally, the complex-
valued version of the proposed algorithm will be given
in this paper for wider applications. In addition, this
proposed minor component analysis algorithm can also
be used to extract the principal component by simply
reversing the sign of the corresponding terms.

1. INTRODUCTION

The eigenvector corresponding to the smallest eigenvalue
of the autocorrelation matrix of an input signal is re-
ferred to as the minor component. The adaptive extrac-
tion of the minor component is an essential problem in
many diverse applications of signal processing [1]. Based
on the unsupervised learning (self-organization) and par-
allel processing properties of neural networks, a number
of algorithms for extracting adaptively the minor compo-
nent have been proposed and analysed [2,3,4,5,6]. How-
ever, these available minor component analysis (MCA)
algorithms su�er from at least one of the following prob-
lems: (1) the norm convergence can not be guaranteed
unless the smallest eigenvalue is assumed less than unity;
(2) the learning phase needs division computation; (3) it
is necessary to estimate the trace of the autocorrelation
matrix of the input signal before to start the learning
phase. These shortcomings prevent the available algo-
rithms from being widely used and more e�ective MCA
algorithms are desirable.

To attack the above problems, this paper proposes
a generalized nonlinear minor component analysis algo-
rithm. First, we will prove analytically and illustrate by
simulation results that with appropriate nonlinear func-
tions the proposed algorithm can extract adaptively the

minor component, however neither with division com-
putation nor with any assumption on the eigenvalues.
This proposed algorithm can also avoid the estimation
of the trace of the autocorrelation matrix of the input
signal before learning. Second, we will discuss how to
choose the related nonlinear functions so as to guaran-
tee the desired convergence. Third, we will show that all
the other available MCA algorithms are special cases of
this proposed generalized MCA algorithm. Fourth, the
complex-valued version of the proposed algorithm will
be given in this paper for wider applications. In addi-
tion, this proposed MCA algorithm can also be used to
extract the principal component by simply reversing the
sign of the corresponding terms. All these demonstrate
that the proposed MCA algorithm is much more suitable
and can provide more exibility for practical applications
than the other available MCA algorithms.

2. PROPOSED ALGORITHM AND

ITS CONVERGENCE

Let us consider a bounded continuous-valued station-
ary ergodic data vectorX(t) = [x1(t); x2(t); : : : ; xN (t)]

T

with �nite second-order moments, whose autocorrelation
matrix R is de�ned as

R = E[X(t)XT (t)] (1)

If �1 � �2 � : : : � �N � 0 denote the eigenvalues and
S1;S2; : : : ;SN denote the corresponding orthonormal
eigenvectors of the matrix R. Then, our task is to ex-
tract adaptively the eigenvector SN directly from the
input vector X(t).

The proposed generalized algorithm is written as

W (t+ 1) =W (t)� (t)(z(t)g(t)X(t)� f(t)W (t))
(2)

where various quantities are described as follows: W (t) =
[w1(t); w2(t); : : : ; wN (t)]

T is anN -dimensional weight vec-
tor; (t) is a step-length parameter; g(t) and f(t) are
nonlinear scalar functions and

z(t) =

NX
i=1

wi(t)xi(t) =W
T (t)X(t) (3)

According to the stochastic approximation theory men-
tioned in Reference [2,3], it can be shown that if some



conditions are satis�ed, then the asymptotic limit of the
above discrete learning algorithm can be solved by apply-
ing the corresponding continuous-time di�erential equa-
tions

dW (t)

dt
= �g(t)z(t)X(t) + f(t)W (t) (4)

and

dW (t)

dt
= �g(t)RW (t) + f(t)W (t) (5)

These conditions include mainly that:
(1) (t) is a sequence of positive real numbers such that
(t)! 0;

P
t 

p(t) <1 for some p, and
P

t (t) =1,
(2) X(t) is zero mean, stationary and bounded with
unity probability,
(3) the right-hand side term of (4) is continuously di�er-
entiable inW (t) and X(t) and its derivative is bounded
in time.

Now we give a theorem concerning the convergence of
the algorithm (2).

Theorem

IfW T (0)SN 6= 0 and g(t) is a positive function, then
it holds

lim
t!1

W (t) = lim
t!1

yN (t)SN (6)

where we used the notation yi(t) = W
T (t)Si (for i =

1; 2; � � �; N).
The proof of this theorem reads:
Using yi(t) =W

T (t)Si and (5), we get

dyi(t)

dt
= ��iyi(t)g(t) + f(t)yi(t) (7)

( i = 1; 2; � � �; N)

According to the assumption of the initial value W (0),
we may de�ne

ci(t) =
yi(t)

yN (t)
(8)

( i = 1; 2; � � �; N � 1)

and obtain

dci(t)

dt
=

yN (t)
dyi(t)

dt
� yi(t)

dyN (t)

dt

(yN (t))2
(9)

Combining (7) and (9) gives

dci(t)

dt
=

1

y2N (t)
((��iyi(t)g(t) + f(t)yi(t))yN (t)

�(��NyN(t)g(t) + f(t)yN(t))yi(t))

= (�N � �i)g(t)ci(t) (10)

( i = 1; 2; � � �; N � 1)

and

ci(t) = KiNexp((�N � �i)

Z t

0

g(�)d�) (11)

( i = 1; 2; � � �; N � 1)

where KiN is a constant depending on the initial values
and the eigenvalues of the matrix R.

Using (8) yields

yi(t) = KiNyN (t)exp((�N � �i)

Z t

0

g(�)d�)
(12)

( i = 1; 2; � � �; N � 1)

If the smallest eigenvalue �N is single, that is, �N < �i
(for i = 1; 2; � � �; N � 1), then we have from (12),

lim
t!1

yi(t) = 0 (13)

( i = 1; 2; : : : ; N � 1)

and

lim
t!1

W (t) = lim
t!1

yN (t)SN (14)

that is (6).
In the case that the smallest eigenvalue �N is multiple,

that is, �N = �N�1 = : : : = �K = �, (12) still holds but
(14) becomes

lim
t!1

W (t) =

NX
i=K

lim
t!1

yi(t)Si: (15)

Multiplying the above equation by R on the left yields

lim
t!1

RW (t) =

NX
i=K

lim
t!1

yi(t)RSi

=

NX
i=K

lim
t!1

�iyi(t)Si

= �

NX
i=K

lim
t!1

yi(t)Si

= � lim
t!1

W (t) (16)

which means that limt!1W (t) is in the direction of the
eigenvector corresponding to the multiple eigenvalue � of
the matrix R. This fact and (14) show that (6) holds
and conclude the proof of this theorem.

In addition, it is easy to see from the above proof that
the direction of the weight vector of the algorithm (2)
will converge to the direction of the second minor com-
ponent SN�1 if yN (0) =W

T (0)SN = 0 and yN�1(0) =

W
T (0)SN�1 6= 0, that is, limt!1W (t) = limt!1 yN�1

(t)SN�1. We can also come to the conclusion that the
direction of the weight vectorW (t) will converge to the
direction of the eigenvector Si�1 corresponding to the
eigenvalue �i�1 if yN (0) = yN�1(0) = � � � = yi(0) = 0



and yi�1(0) 6= 0, that is, limt!1W (t) = limt!1 yi�1(t)
Si�1.

In fact, the convergence ofW (t) to SN can be divided
into two parts, that is, the direction convergence and the
norm convergence. Because (12) is independent of the
nonlinear function f(t), the speed of direction conver-
gence depends mainly on the positive nonlinear function
g(t). However, the norm convergence depends on not
only g(t) but also f(t). The above theorem guarantees
only the direction convergence but not the norm conver-
gence. It can be shown that one su�cient condition to
guarantee the norm convergence of the proposed algo-
rithm is

f(t) �
z2(t)

W
T (t)W (t)

g(t) (17)

Moreover, if we select

f(t) =
z2(t)

W
T (t)W (t)

g(t) (18)

then the norm ofW (t) will be invariant during the learn-
ing phase and equal to the norm of the initial weight
vectorW (0), that is,

kW (t) k=kW (0) k; t > 0; (19)

lim
t!1

W (t) = � kW (0) k SN (20)

This invariant property means that only the direction
convergence is involved in the learning phase and sug-
gests that another su�cient condition to guarantee the
norm convergence is

f(t) =
z2(t)

W
T (0)W (0)

g(t) (21)

In addition, this property is also very useful in designing
the hardware implementation of the proposed algorithm.

Based on the above, we can select appropriate func-
tions g(t) and f(t) so as to guarantee the direction con-
vergence and the norm convergence without any short-
comings mentioned above. A very simple example to
select g(t) and f(t) is

g(t) =W T (t)W (t) (22)

f(t) = z2(t) (23)

According to (21), we can also select

g(t) =W T (0)W (0) (24)

f(t) = z2(t) (25)

3. FURTHER DISCUSSIONS

It is easy to show that the other available MCA algo-
rithms are all special cases of the generalized algorithm
(2), that is,

1. for the constrained anti-Hebbian learning algorithm
presented in [2,3], g(t) = 1, f(t) = z2(t):
2. for the normalized version of the constrained anti-
Hebbian learning algorithm proposed in [3], g(t) = 1,

f(t) =
z2(t)

W
T

(t)W (t)
;

3. for another constrained anti-Hebbian learning algo-
rithm reported in [2,6], g(t) = 1, f(t) = z2(t) + 1 �

W
T (t)W (t);

4. for the algorithm proposed in [4], g(t) = 1, f(t) =
z(t)xN (t);
5. for the algorithm suggested in [5], g(t) = 1, f(t) =

2K(1�W T (t)W (t)), where K is a positive parameter
which is determined by the trace of the autocorrelation
matrix.

For wider applications, the proposed algorithm (2)
can be extended to the complex-valued case. In the
complex-valued case, (2) becomes

W c(t+ 1) =W c(t)� (t)(g(t)Xc(t)zc(t)� f(t)W c(t))
(26)

where

zc(t) =X
T
c (t)W c(t) (27)

zc(t) =

�
zr(t)
zi(t)

�
; Xc(t) =

�
Xr(t) �Xi(t)
Xi(t) Xr(t)

�

W c(t) =

�
W r(t)
W i(t)

�

and X(t) = Xr(t) + jXi(t), W (t) =W r(t) + jW i(t),

z(t) = zr(t) + jzi(t), and z(t) =WH(t)X(t).
It is worthy mentioning that if we simply reverse the

sign of the second and the third term of the algorithm
(2), that is,

W (t+ 1) =W (t) + (t)(z(t)g(t)X(t)� f(t)W (t))
(28)

then the weight vector provided by the algorithm (28)
will converge to the principal component S1 on the con-
dition that W T (0)S1 6= 0, g(t) > 0 and

f(t) �
z2(t)

W
T (t)W (t)

g(t):

4. SIMULATIONS

We have simulated the proposed MCA algorithm. Two
examples are given in this paper. We generated a ran-
dom vector X(t) according to one of the most common

models in signal processing, that is, xi(t) =
PL

j=1 aj(t)

cos(2(i�1)�fj+bj(t))+ci(t) where aj(t) is a magnitude
parameter sequence, fj is a frequency parameter, bj(t) is
the initial phase which is an uniform sequence in [0; 2�],



ci(t) is a zero-mean random sequence. We selected non-
linear functions as (24) and (25) show. In the �rst ex-
ample, the smallest eigenvalue is single. In the second
example, the smallest eigenvalue is multiple. For sim-
plicity, in the simulations we let (t) be unchanged dur-
ing the learning phase. A more sophisticated and better
selection of (t) could be made according to the Robbins-
Monro procedures [3]. R is the autocorrelation matrix
with N �N elements,W (0) is the initial vector. W (f)
is the weight vector provided by the algorithm (2) in
the convergent state. �a is the exact smallest eigenvalue

and �f is obtained by computing �f =
W

T

(f)RW
T

(f)

W
T

(f)W
T

(f)
.

Obviously, �f � �a. For further illustration, Figures 1
and 2 describe the learning process of the weight vector
W (t).
Example 1:

R =

0
BB@

13:5000 11:2490 7:8627 3:3117
11:2490 13:5000 11:2490 7:8627
7:8627 11:2490 13:5000 11:2490
3:3117 7:8627 11:2490 13:5000

1
CCA

W (f) =
�
0:5098 �0:8000 0:3088 0:1008

�T
W (0) =

�
0:5000 �0:5000 0:5000 0:5000

�T
�a = 1:0026; �f = 1:0470

Example 2:

R =

0
BB@

5:5000 3:6406 1:3906 �1:3906
3:6406 5:5000 3:6406 1:3906
1:3906 3:6406 5:5000 3:6406
�1:3906 1:3906 3:6406 5:5000

1
CCA

W (f) =
�
0:6557 �0:6052 �0:0826 0:4469

�T
W (0) =

�
1:0000 0:0000 0:0000 0:0000

�T
�a = 1:0000; �f = 1:0004

The simulation results have demonstrated the accu-
racy of the above analyses and the e�ectiveness of the
proposed algorithm.
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Figure 1. The learning process of the
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