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ABSTRACT

In this paper we apply Discriminative Metric De-
sign (DMD), the general methodology of discrim-

inative class-feature design, to a speech recognizer

using a Hidden Markov Model (HMM) classi�ca-

tion. This implementation enables one to repre-

sent the salient feature of each acoustic unit that

is essential for recognition decision, and accord-

ingly enhances robustness against irrelevant pat-

tern variations. We demonstrate its high util-

ity by experiments of speaker-dependent Japanese

word recognition using linear feature extractors

and mixture Gaussian HMMs. Furthermore, we

summarize several other recently-proposed design

methods related to our DMD and show that they

are special implementations of the DMD concept.

1. INTRODUCTION

A pattern recognizer generally consists of a fea-

ture representation of each pattern class and a

measurement of membership to each class. Ob-

viously, both modules should be jointly designed

with the single objective of minimizing recogni-

tion errors for the optimality of the entire recog-

nition process. One general framework to achieve

this goal is Discriminative Metric Design (DMD)
[1]. DMD is used to design an individual feature

extractor of each class with the Minimum Clas-

si�cation Error/Generalized Probabilistic Descent

method (MCE/GPD) [2] so as to minimize recog-

nition error probability; it emphasizes each salient

class feature for accurate recognition, and, accord-

ingly, enhances design robustness against irrele-

vant pattern variations.

In this paper we specially elaborate upon a DMD

formulation for a speech recognizer using HMMs.

In this implementation, each state in each HMM

has its own feature extractor; the feature of each

acoustic unit that is essential for recognition can

thus be represented e�ciently. We demonstrate

its utility by experiments of speaker-dependent

Japanese word recognition in the case of linear fea-

ture extractors and mixture Gaussian HMMs.

DMD is essentially quite general and can be ap-

plied to various system structures, including neu-

ral networks. In fact, an HMM recognizer can be

easily considered as an extended kernel-based net-

work [3], and therefore the discussions in this pa-

per will be clearly useful for increasing the appli-

cability of neural-network speech recognizers.

In recent literature, several other design meth-

ods related to our DMD have been newly investi-

gated [4, 5, 6, 7]. The paper also summarizes these

methods from the general DMD viewpoint.

2. BASIC DMD FORMALIZATION

Consider the problem of classifying an input pat-

tern X into one of K classes fCsg
K
s=1 using the

following decision rule C(X):

C(X) = Ci if i = argmax
s

gs(Ts(X)); (1)

where gs(Y s), named the class-membership mea-

sure, indicates the degree to which Y s belongs to

Cs, and Ts(X), named the class-feature extractor,

represents the extraction of Cs's feature. DMD

optimizes each class-speci�c metric, i.e., both Ts
and gs, with MCE/GPD so as to minimize the

recognition error probability. Figure 1 illustrates

the system structure and the training mechanism

used in the DMD formalization. Recognizers with

DMD therefore can perform robust recognition

since each Ts can represent a salient feature of

its corresponding class. In [1], DMD was proven

useful through a particular implementation where

it optimized the linear transformation Ts and Eu-

clidean distance gs in the case of �xed-dimensional
X .

DMD's most outstanding property is that each

class discriminant function gs(Ts(X)) has its own

feature extractor Ts(X). If all class-feature ex-

tractors are identical (T1 = T2 = � � � = TK = T ),



DMD becomes equivalent to Discriminative Fea-

ture Extraction (DFE) [8], and, furthermore, if T
is �xed during training, DMD becomes equivalent

to conventional MCE/GPD classi�er design. A

clear perspective on discriminative feature design

including the above relationships is given in [9].
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Figure 1. DMD-based pattern recognizer structure
and its training mechanism

3. APPLICATION OF DMD TO HMM
FRAMEWORK

3.1. Design formulation for HMMs

We apply the DMD concept to the recognition of

variable-dimensional (dynamic) patterns, such as

speech signals. Such dynamic patterns must be

characterized using nonlinear time-warping mod-

els such as HMMs. Furthermore, it is desired to

model long-durational pattern classes (e.g., words

or sentences) by concatenating shorter unit mod-

els (e.g., phoneme or syllable models). Here we

consider a word recognition task and assume that

a word model consists of several phoneme HMMs.

For this case, a formulation of DMD training is

given as follows.

The discriminant function of Cs (the s-th word

class) is a log-likelihood score along the optimal

HMM/state path, de�ned as

gs(Ts(X)) =

TX
t=1

ln

n
a's;t�s;t�1�s;t

o

+

TX
t=1

ln

n
b's;t�s;t

�
T's;t�s;t(xt)

�o
;

(2)

where X = [ x1 x2 ::: xT ] 2 RD�T
is an input

sequence of D-dimensional vectors,

�s = f('s;1; �s;1); ('s;2; �s;2); :::; ('s;T ; �s;T )g (3)

denotes Cs's optimal HMM/state sequence ('s;t:
phoneme-HMM index, �s;t: state index), ah;i;j
is the state transition probability of the h-th
phoneme HMM, bh;j(yh;j) is the output p.d.f. in

the j-th state of the h-th phoneme HMM, and

Th;j(�) stands for the feature extractor in the j-
th state of the h-th phoneme HMM. In this imple-

mentation,Cs's feature extractor Ts(�) is regarded
as the concatenation of each Th;j(�) along with the

optimal path �s:

Ts(X) = Ts ([ x1 ::: xT ])

=

h
T's;1�s;1(x1):::T's;T �s;T (xT )

i
: (4)

The DMD training is done by jointly opti-

mizing both the parameter sets of the models

fah;i;j,bh;j(�)g (�G) and the feature extractors

fTh;j(�)g (�T ) with MCE/GPD. MCE/GPD gen-

erally uses adaptive (sequential) training, whose

parameter-updating formulae are given as

�
(n+1)
G

= �
(n)
G

� "nUGr�G`(Xn;�
(n)

) (5)

�
(n+1)
T = �

(n)
T � "nUTr�T `(Xn;�

(n)
) (6)

� = (�G ;�T );

where the superscript
(n)

stands for the parameter

state at the n-th iteration step, Xn is a train-

ing pattern picked up randomly at the n-th step,

"n (> 0) is a learning step size (vanishing with

n), UG and UT are positive-de�nite matrices, r�

represents the partial derivative in a parameter �,
and `(�) is the smooth error-counting loss function.
Formalizations of the loss function and its deriva-

tive are the very same as those of usual MCE/GPD

training implementations; e.g., see [10]. Note that,

in the same sense as the original MCE/GPD, the

training run based on (5) and (6) leads to the op-

timal (in the sense of minimum recognition error

probability) status of �, or in other words, the

optimal status of all the metrics, in a probabilistic

descent sense. Obviously, this resulting training

rule is not restricted to the case where the unit

models correspond to phonemes.

If we �x all fTh;j(�)g with identity mapping, the

DMD training of HMMs becomes equivalent to

conventional Segmental GPD [11]. In Segmental

GPD, we have to assign in each state many ref-

erence patterns (e.g., multiple Gaussian means)

in order to model statistical pattern variations.

On the other hand, in DMD, each state's fea-

ture extractor Th;j(�) suppresses such variation fac-
tors, and, accordingly, fewer reference patterns are

needed; robustness to unknown patterns will in-

crease. For example, in the case of recognizing



�xed-dimensional patterns using distance classi-

�ers, it has been veri�ed that class-feature de-

sign contributes more toward increasing robust-

ness than does the assignment of many reference

patterns [1].

3.2. Experimental Results

[1] demonstrated the fundamental feasibility of

DMD in a task of recognizing static vowel frag-

ment patterns. To study the method in a more

realistic environment, we conducted in this paper

experiments of speaker-dependent Japanese word

recognition using the ATR 5240-word database.

Training and testing were performed on the even

numbered words and the odd numbered words, re-

spectively.

Each token input to the recognizer was a se-

quence of 34-dimensional vectors, each consisting

of 16 LPC cepstral coe�cients and their delta pa-

rameters, a power and a delta power. Computa-

tion was done using a 20-ms Hamming window

with a 5-ms shift.

Acoustic unit models were 26 context-independ-

ent left-to-right phoneme HMMs. We specially

de�ned each bh;j(�) as a mixture Gaussian p.d.f.,

and each Th;j(�) as a linear transformation matrix

W h;j. Here the adjustable parameters were mix-

ture weights, mean vectors and covariance matri-

ces in all fbh;j(�)g and feature transformation ma-

trices fW h;jg. All covariance matrices were diag-
onal, all (non-zero) state transition probabilities

fah;i;jg were identical and �xed, and all fW h;jg
were square matrices (i.e., without dimensionality

reduction).

For MCE/GPD training, all parameters of

fbh;j(�)g were initialized by performing the

phoneme-level Segmental K-means training, and

all fW h;jg were initialized at the identity ma-

trix. In DMD the parameters of both fbh;j(�)g
and fW h;jg were trained by MCE/GPD, whereas

in Segmental GPD only the parameters of fbh;j(�)g
were adjusted.

Table 1 summarizes the recognition rates in

terms of phoneme accuracy for one male speaker.

In the table, (N;M) denotes the N -state M -

mixture HMMs. Both of the DMD-based recog-

nizers with a single mixture and four mixtures

achieved the best score for testing sets. Moreover,

interestingly, the DMD-based recognizer with a

single mixture performed better than did the con-

ventional Segmental GPD-based one with four

mixtures, especially over the testing set. This

result clearly demonstrates that the DMD e�ec-

tively designs each salient class feature for accu-

rate recognition, makes the classi�cation models

simpler, and consequently enables high-accuracy

recognition for unknown future patterns.

Table 1. Recognition rates (phoneme accuracy)

training testing

Segmental K-means (2,4) 74.05% 73.21%

Segmental GPD (2,4) 94.10% 90.73%

DMD (2,4) 98.16% 93.95%

DMD (2,1) 97.28% 93.55%

4. RELATED WORKS

In this section we discuss several recent methods

related to DMD from the uni�ed viewpoint of gen-

eral DMD; this convincingly illustrates the DMD's

utility in a wide range of applications and will pro-

vide us with a clear perspective on feature design.

[4] proposes a design method which �nds the

optimal feature transformation matrices for Mel-

warped short-time spectral input vectors in the

case of mixture Gaussian HMMs. It �nds model-

and state-dependent transformation matrices by

MCE/GPD with Discrete Cosine Transformation

(DCT), which produces Mel-warped cepstral vec-

tors, as the initial transformation. Since the re-

sulting feature transformation matrices are class-

dependent, this design method should be regarded

as an implementation of DMD, although in [4] it

is placed in DFE. In the experiments, it is demon-

strated that the class-speci�c feature design with

MCE/GPD clearly enhances the recognition accu-

racy rather than designing only the model param-

eters on the �xed feature transformation (DCT).

[5] also proposes a design framework for �nd-

ing optimal feature transformation matrices with

MCE/GPD, although the input vector sequence

di�ers from that in [4]. Both class-independent

and class-dependent training procedures are for-

mulated: the former corresponds to DFE while the

latter is an implementation of DMD. In [5], this

design method is applied to HMM-based speaker

recognition, and the experiments verify the per-

formance improvement of discriminative feature

design in both cases of speaker identi�cation and

speaker veri�cation. Furthermore, it is interest-

ing to see that the class-dependent feature design

(which corresponds to DMD) yields a lower error

rate than the class-independent design (which cor-

responds to DFE).

[6] applies arti�cial neural networks (ANNs) to

nonlinear feature extractors in an HMM-based

speech recognition system and adjusts both of the



ANN and HMM parameters by MCE/GPD with a

single objective of minimizing the recognition er-

ror rate. It also proposes two types of systems:

one using a single ANN over all models, which

corresponds to DFE, and the other using an in-

dividual ANN for each model, which is a DMD

implementation. The utility of MCE/GPD-based

feature design is demonstrated by experiments in

a speaker-independent telephone-based connected

digits recognition task. Furthermore, as in [5], the

model-speci�c ANN design, which corresponds to

DMD, achieves lower error rates than does the sin-

gle ANN design, which corresponds to DFE.

[7] investigates a special acoustic model named

Frequency-Weighted HMM where the input pat-

tern is a sequence of group-delay spectral vectors

[7] and the HMM- and state-dependent frequency-

weighting diagonal matrices are optimized by

MCE/GPD. This can be considered as a spe-

cial case of DMD where the class-feature extrac-

tors are limited to diagonal matrices. The con-

siderable e�ect of optimizing weighting matrices

is demonstrated in noisy speech recognition ex-

periments. However, in order to explore the

salient feature space from the original input pat-

tern space, more general matrices containing ro-

tation factors, rather than diagonal matrices, are

desired [1].

5. CONCLUSION

This paper applied Discriminative Metric Design

(DMD), the general concept of the discrimina-

tive design of class features, to a speech recog-

nizer with connected HMMs. Its high utility was

demonstrated by experimental results from a task

of speaker-dependent Japanese word recognition

using linear feature extractors and mixture Gaus-

sian HMMs. Furthermore, we summarized several

other recently-proposed design methods related to

our DMD and showed that they are special imple-

mentations of the DMD concept.

Since our DMD is general, one can easily ex-

tend the special implementations elaborated in the

above experiments to more general ones with non-

linear feature extractors [6] or other types of dy-

namic pattern models in addition to HMM, such

as multi-state distance metric [12].
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