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ABSTRACT

Neural network training targets for speech recognition

are estimated using a novel method. Rather than use zero

and one, continuous targets are generated using forward-

backward probabilities. Each training pattern has more

than one class active. Experiments showed that the new

method e�ectively decreased the error rate by 15% in a

continuous digits recognition task.

1. Introduction

A new training method for hybrid speech recognition sys-

tems is presented in this paper. Hybrid approaches for

speech recognition are motived by exploiting the advantages

of Hidden Markov Models (HMMs) and Neural Networks

(NNs). HMMs have been used extensively in speech recog-

nition for their ability to model the temporal information

in speech, while NNs have been shown to be a powerful tool

for static classi�cation tasks due to their discriminant na-

ture. A variety of NN-based approaches have been reported

(e.g. [14, 4, 10, 6, 2, 13, 12, 7, 9, 8, 5, 11]).

In most of these approaches, the NNs were used as a pos-

terior probability estimator. The outputs of the NNs were

used as the state emission probabilities within a Morkov

chain. Typically, a single network is used to estimate prob-

abilities for all classes (phones or sub-phonetic units). To

train the network, each training pattern is assigned a \de-

sired" output vector, i.e. a desired value for each of the

classes. In general, a Viterbi-based forced alignment method

is employed (when phonetically transcripted data are not

available) and the subword units in the best path found by

Viterbi decoding are used to generate the training targets.

For each feature vector, only a single class is assigned a

target of 1.0 and the rest are assigned a target of 0.0.

Although it is very simple computationally, this method

does not accurately re
ect the nature of speech in a train-

ing pattern. For features based on short-time analysis, the

distinction between contiguous phones (or other modeling

units) at the transition region is ambiguous; the speech vec-

tor represents both classes. It is not appropriate to force a

hard decision. A reasonable set of targets should represent

this; a soft (probabilistic) decision is more appropriate. At-

tempts along this direction have been made recently, in [11]

a frame work called REMAP was proposed and applied to a

transition-based model to estimate the posterior probabili-

ties, and in [10] a VQ-like technique was used to estimate

the fuzzy likelihoods.

This paper describes a method for estimating continu-

ous targets for training patterns of NNs based on the con-

ventional forward-backward algorithm. The targets used

to train the neural network are derived from the posterior

state occupation probabilities.

This approach was evaluated on a continuous digit tele-

phone speech database. For comparison, evaluations were

also done for a hybrid system using our previous work (trained

with Viterbi forced alignment with only 1 �xed non-zero

target per training pattern) ( [1]) and for a continuous

HMM-based recognizer, using the same training, develop-

ment and testing sets. The results showed more than a 15%

error reduction for the hybrid system using the new training

method.

The rest of this paper is organized as: Section 2 de-

scribes how neural network targets are derived using the

forward-backward algorithm. Section 3 describes our hy-

brid system. Section 4 describes the comparative experi-

ments and results. Concluding remarks are given in Section

5.

2. Target Estimation Using the

Forward-backward Probabilities

The common practice for generating targets of training pat-

terns is based on Viterbi forced alignments on the training

utterances. Each input speech vector (training pattern) is

assigned to one class with a non-zero target, and the tar-

gets for the rest of the classes are set to zero. In theory, a

NN trained using discrete targets of 0 and 1 will produce

posterior probabilities as outputs (such outputs minimize

the training error). However, this theoretical result relies

on unlimited training data and network resources. In fact,



networks are severely limited in the amount of training data

which can be used. Unlike HMMs, not every frame of the

training data is in the training set. These data must be

subsampled to achieve reasonable training times. Exami-

nation of the behavior of NN outputs in ambiguous regions

has shown that they often behave unreasonably, making

extreme decisions which are often wrong. We hypothesize

that a more reasonable target set which represents the true

probabilities will simplify learning, and will increase the

generalizationability of the trained network given the same

amount of data (especially for outputs with sparse training

data, which are common for context-dependent modeling).

In HMM training, the forward-backward algorithm achieves

model optimization by estimating the posterior probability

of being each state and the posterior probability of state

transitions for each observation. These posterior proba-

bilities are estimated based on the forward and backward

probability calculations. In our proposed work, by view-

ing the outputs of an initialized neural net on the training

utterances as emission probabilities of Markov states, the

targets for input training patterns are reestimated within

the framework of the forward-backward algorithm.

In a HMM system, the probability of the observation

sequence O is de�ned as Pr(OjS; �):

Pr(OjS; �) = bs1(O1)bs2 (O2) � � � bsT (OT ) (1)

where S is the state sequence of Markov chain, Oi is the ith

observation and � is the model set.

The probability of the corresponding state sequence is

de�ned as:

Pr(Sj�) = as1s2as2s3 � � �asT�1sT (2)

where si is the ith state in the state sequence. The likeli-

hood Pr(Oj�) is given as:

Pr(Oj�) =
X

all S

Pr(OjS; �)Pr(Sj�) (3)

=
X

allS

TY

t=1

ast�1stbst(Ot) (4)

The forward probability is de�ned as:

�t(i) = Pr(O1;O2; � � � ;Ot; St = ij�) (5)

=
X

i

�t�1(i)aijbj(Ot) (6)

The backward probability is de�ned as:

�t(i) = Pr(Ot+1;Ot+2; � � � ;OT jSt = i; �) (7)

=
X

i

ajibi(Ot+1)�t+1(i) (8)

So the posterior probability of transitions �ij , from state

i to state j given the observation and model can be com-

puted as:

�ij(t) = Pr(st = i; st+1 = jjO;�) (9)

=
�t(i)aijbj(Ot+1)�t+1(j)

Pr(Oj�)
(10)

=
�t(i)aijbj(Ot+1)�t+1(j)P

k2S
�T (k)

(11)

The posterior probability of being in state i at time t can

be computed as:

�i(t) = Pr(st = ijO;�) (12)

=
�t(i)�t(i)P
k2S

�T (k)
(13)

And the transitions between states of a model can be esti-

mated as:

aij(t) =

PT�1

t=1
�ij(t)PT�1

t=1

P
k
�ik(t)

(14)

=

PT�1

t=1
�ij(t)PT�1

t=1
�i(t)

(15)

During training, an initialized NN is needed. The out-

puts of the initialization network are used as the emission

probabilities of the Markov states, and the initialization

network is retrained using the generated targets (in (12)).

3. The Hybrid System

The hybrid system used for this study is very similar to

our previous approach described in [1], except within-model

state transitions are implemented in this new system.

Like most of the other hybrid systems, the NN in our

system is used as a state emission probability estimator. A

three-layer fully-connected NN was used in this study. The

modeling units are phones. Each phone has one to three

states, and each state corresponds to an output node of the

NN.

The relation between context-dependent phone models

and the output nodes is illustrated in Figure 1. In the �gure,

L-PH-R denotes phone PH in the context of phone L (left)

and R (right). As shown, the context-dependent phones

from the same monophone shared the middle state. The

left (right) state for each model only depends on the left

(right) context. Thus in Figure 1, both the middle states

and the end states of the the w-ay-f and l-ay-f /ay/ models

use the same NN output.

Unlike most of the existing hybrid systems which do

not model the within phone model transitions, our new hy-

brid does model the speech process as a double stochastic

process. As an analogy to the naming of discrete, semi-

continuous, and continuous HMMs, our new hybrid system

can be called NN/HMMs (since the emission probability is

modeled by a NN).
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Figure 1: Relation between NN output nodes and the phone

models

During training, an initialization NN was trained �rst

using our previous Viterbi forced alignment-based method.

The within-phone transition probabilities were initialized

with constant numbers. Then we used the proposed forward-

backward re-estimation algorithm to regenerate the tar-

gets for the training utterances. The forward-backward

re-estimation is implemented in an embedded form, which

concatenates the phone models in the input utterance into

a \big" model and reestimates the parameters based on the

whole input utterance. The NNs were trained using the

standard stochastic backpropagation algorithm with mean

square error as the cost function.

4. Comparative Experiments

4.1. Database and Task

The speech corpus used in this experiment consists of digit

sequences taken from the public domain numbers corpus

(telephone speech), collected by the Center for Spoken Lan-

guage Understanding (CSLU) at OGI [3]. Each utterance

contains 1 to 6 continuously pronounced digit strings. Since

callers were recruited through public advertisements, and

were instructed to call the data collection phone number

at any time or place, the database is close to a real-world

application environment. False starts, pauses, repetition,

and background noise are common in the database. The

vocabulary consists of: zero, oh, one, two, three, four, �ve,

six, seven, eight and nine. The data were randomly divided

into three sets, with 2090 utterances in the training set, 500

utterances in the development test set and 1600 utterances

in the �nal evaluation set. 1

4.2. The HMM System

A continuous phone-based HMM recognizer was implemented

using HTK ([15]) for comparison purposes. Each phone was

1More information, including how to download a free copy of

CSLU toolkit, is available via http://www.cse.ogi.edu/CSLU/

represented as a 3-state left-to-right model with a 4-element

Gaussian mixture using diagonal covariances. The speech

signal was parameterized every 12.8 ms with a 25.6 Ham-

ming window. The feature vector is 26-dimensional, with

12 LPC-Cepstra plus normalized energy plus their deltas.

Cepstral mean subtraction was used. There are 77 context-

dependent phone models total.

4.3. The Hybrid Systems

Two hybrid systems were built for evaluating target gener-

ating methods. One is based on our previous work, which

only has 0-1 as targets, and for each input speech vector

only one class is assigned to a non-zero target. Within-

phone state transition probabilities were not used in the

baseline system.

The second system was retrained using forward-backward

targets. Within-phone state transition probabilities com-

puted with the forward-backward algorithm were used in

this system.

4.3..1 The Baseline

The baseline system was based on our previous work ( [1]).

The NN used was a three-layer fully-connected feed-forward

net. It had 56 input nodes, 200 hidden nodes and 209 out-

put nodes. PLP analysis was carried out every 6 ms with a

10 ms window. For each frame, the resulting feature is a 8-

dimensional vector (7 PLP coe�cients plus energy). Seven

contiguous frames were used as one NN input vector (hence

the NN has 56 input nodes). The use of multi-frame fea-

tures alleviates the problem caused by the HMM indepen-

dence assumption about contiguous acoustic observation.

4.3..2 The New System

The network trained for the baseline system was used as

the initialization net in this experiment. The new system

used the same feature set as the baseline system, and has

the same architecture as the initialization network.

We �rst ran the initialization network on the training

set, and got the emission probabilities for each input vec-

tor. The within-phone transition probabilities were initial-

ized as (0.6, 0.4) for each state (0.6 as the probability to

stay and 0.4 as the probability to escape to the next state).

The words in each utterance were instantiated to phone

strings using the pronunciation dictionary. The embedded

forward-backward algorithm was run on each utterance and

generated new targets for the speech vectors. Once all the

new targets for the training set were re-estimated, a new

NN was trained.

We iterated the above process twice (the second time

using the network trained in the �rst iteration as the initial

network), and used the �nal trained net in our new system.

4.4. Experiments and results

The three systems are evaluated on the development set and

the �nal test set. Results are summarized in Table 4.4..



Data Set Unit HMM Baseline New

Dev. set Word 4.1% 4.1% 3.1%

String 13.2% 13.0% 11.4%

Test Set Word 5.7% 6.0% 4.9%

String 18.9% 19.7% 16.7%

Table 1: Word and String (Sentence) Error Rates for the

three systems

Also, we compared the impact of the within-model state-

transition modeling to the system performance. The results

showed that the modeling has little e�ect on word correct-

ness but decreased the insertion error by 30%, thereby in-

creasing the sentence accuracy by 5%.

5. Concluding Remarks

This paper reported our �rst attempt to improve the pos-

terior probability estimation using NNs. Encouraging re-

sults were achieved on a digit task. It e�ectively decreased

the error rate of our baseline approach by more than 15%.

Currently we are extending this work to large vocabulary

recognition tasks.
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