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ABSTRACT

In this paper we propose a simple but powerful method
for normalizing various sources of mismatch between train-
ing and testing conditions in speech recognizers, based on
a recent training methodology called the Generalized Prob-
abilistic Descent method (GPD). In this new framework,
a gradient based method is used to adapt parameters of
the feature extraction process in order to minimize distor-
tion between new speech data and existing classi�er models,
while most conventional normalization/adaptation methods
attempt to adapt classi�cation parameters. GPD was pro-
posed as a general discriminative training method for pat-
tern recognizers such as neural networks. Up until now this
has been used only for classi�er design, sometimes in combi-
nation with the design of a non adaptive feature extractor.
This paper, in contrast, studies the adaptive training bene-
�ts of GPD in the framework of normalizing the feature ex-
tractor to a new pattern environment. Experiments which
use this technique to improve Japanese vowel classi�cation
were conducted and demonstrate the ability to reduce error
rates by as much as 40%.

1. INTRODUCTION

A speech recognizer usually consists of a front-end feature
extractor module and a back-end classi�er module. In most
cases, the feature extractor is selected based on mathemat-
ical models of speech production or hearing mechanisms,
i.e., LPC and �lter-bank; the classi�er is designed by us-
ing statistical estimation principles such as the Maximum
Likelihood (ML) estimation or the loss (risk) minimization
principle.

There are many factors hindering accurate recognition
of speech utterances, e.g., speaker variation, speaking style
variation, and acoustic channel distortion. In particular,
speaker variation has been extensively studied so as to in-
crease speaker-independency of recognizers. Most solutions
to this problem are based on the adaptation of classi�er
parameters. Techniques such as Maximum a Posteriori es-
timation (MAP) [1] and Vector Field Smoothing (VFS) [2]
have been widely used for this purpose. However, since
these conventional methods attempt to adjust the classi�er
parameters, they have often resulted in low post-adaptation
recognition scores when the amount of training samples is
limited. Note that adaptation of classi�er parameters in
principle requires class information for all possible classes,
and thus usually requires many training samples.

Such adaptation as speaker adaptation and channel-
distortion adaptation should be done quickly. A limited
number of training samples will provide partial information

about classi�cation, and one will need to compensate for
this shortage of information using some assumptions which
are often heuristic. However, there is no guarantee that
these assumptions are mathematically optimal, and there-
fore an alternative approach to the problem is obviously
needed.

Recently, techniques which operate through the adapta-
tion of feature extraction parameters have received atten-
tion (for example [3] [5] [4]). In this paper, we propose
a simple but quite powerful solution based on the recent
training methodology called the Generalized Probabilistic
Descent method (GPD). In this new framework, parameters
of the feature extraction process are optimized with GPD
in order to minimize the mismatch between an adaptation
token and the existing classi�er models.

2. GPD-BASED FEATURE NORMALIZATION

2.1. Concept - adapting �lterbank centers, band-
widths and gains to minimize distortion

The central idea in this paper is the adaptation of centers,
bandwidths and gains of a �lterbank based feature extrac-
tor through gradient-based minimization of the distortion
between adaptation speech and existing classi�er models.
For clarity, we refer to the proposed method as GPD-based
Feature Normalization (GPDFN).

Let us assume that a speech recognizer consists of a
feature extractor parameterized by �, and a classi�er pa-
rameterized by �. Conventionally, the parameter set � is
adapted, as cited above, so that the recognizer can cope
with new environments that have not appeared in the train-
ing stage of the recognizer; the parameters � of the feature
extraction module are �xed. In contrast, GPDFN attempts
to directly reduce mismatch (distortion) between incoming
speech patterns X and classi�er parameters � by learn-
ing a new state of � through probabilistic descent of the
distortion measure. This work can be viewed as an ex-
tended, recognition-oriented formalization of Adaptive Fil-
tering. Most Adaptive Filtering uses Least Mean Square
Method (LMS) for optimization, but GPDFN uses the more
general stochastic descent framework of GPD for optimiz-
ing an overall distortion de�ned over the entire computa-
tional process including nonlinear time alignment. GPDFN
also has a close relation with Discriminative Feature Ex-
traction (DFE) [6] [7], but whereas DFE attempts to learn
� to minimize classi�cation error during the initial training
phase, GPDFN performs the role of normalization, where
the learning of � attempts to make the pre-designed feature
extractor more suited to new environments or data.



2.2. Formalization

The formalization of GPDFN is fundamentally the same as
that of the original GPD and DFE. However, since GPDFN
is aimed at adaptation and normalization and adjusts only
the feature extractor parameter � and not the classi�er pa-
rameters �, whereas DFE optimizes � and � together to
optimize overall classi�er performance, the de�nition of the
loss function is di�erent.
There can be two implementation approaches to GPDFN:

supervised training and unsupervised training. In the su-
pervised training mode, the classes of samples given for
normalization/adaptation are known, and therefore train-
ing can be performed using the distortion de�ned over the
sample and its corresponding correct class model. In the
unsupervised mode, the class of the normalization sample
is unknown, entailing that the training must automatically
select some reasonable class model.
The supervised training of GPDFN is formalized as fol-

lows. Assume that a sample X of class k is given for nor-
malization. Since the class index is now known, we measure
the distance of X with respect to the model for class k, i.e.,
gk(X; �;�). Di�erent from GPD and DFE, this distance it-
self is used as a distortion that must be minimized through
training, i.e. `k(X; �;�) = gk(X; �;�).
As shown in the probabilistic descent theorem [8, 9], the

following adjustment

�[� + 1] = �[� ]� ��U
@`(X;�;�)

@�
(1)

will lead to at least a local minimum of L(�) =
E
X

[`k(X; �;�)]; here U is a positive-de�nite matrix, ��
is a small, monotonically-decreasing, positive number, and
�[� ] denotes the status of � at training iteration � . A prac-
tical approach is to use the given samples repeatedly; i.e.,
similar to the motivation of Adaptive Filtering, GPDFN
may adapt the feature extractor to at least a locally opti-
mal situation, guided by the available samples.
In the unsupervised mode, the most likely model may

be selected in computing the distortion. However, since
there is no guarantee that the model selection is correct,
the normalization may be less e�ective than in supervised
mode.

2.3. Implementation for �lter-bank feature extrac-
tor

In our work we use a �lterbank model of feature extrac-
tion in which parameters such as the channel centers, band-
widths, and gains are normalized.
For computational simplicity, we simulate the �lterbank

model with DFT techniques. This o�ers a fast alternative
to FIR or IIR-based banks-of-�lters. Thus, for a sequence
of speech vectors X = fx1; : : : ;xt; : : : ;xT g in which xt =

[xt;1; : : : ; xt;f ; : : : ; xt;F ]
T is the magnitude spectrum of the

frame (short time window position); xt;f represents the f -th
element of the frame vector. F is the maximum frequency.
A Q-channel �lter bank model transforms each xt into
a lower dimensional vector et = [et;1; : : : ; et;c; : : : ; ; et;Q]

T

such that an output feature et;c is the windowed log energy
of the c-th channel:

et;c = log
10

 X
f2Bc

�c(f)xt;f

!
; for c = 1; : : : ; Q, (2)

where Bc represents the channel interval and �c(f) the
weighting at frequency f provided the c-th �lter.

For practical accommodation of gradient-based optimiza-
tion, we employ a �lterbank model consisting of Gaussian-
shaped �lters de�ned as:

�c(f) = 'c exp
�
��c (p(
c)� p(f))

2
�
; (3)

for c = 1; : : : ; Q, where the trainable parameters �c > 0 and

c determine bandwidth and center frequency, and 'c is the
trainable \gain" parameter in the c-th channel. p(f) maps
the linear frequency f onto the perceptual representation.
An important feature of this type of �lter is related to the
fact that it allows a straightforward adjustment of center
frequency, bandwidth or gain via GPD while preserving the
characteristics of triangular �lters.

2.4. Normalization

Normalization is performed as follows: let `(X;�;�) be the
distortion of the input spectrum Xto the model represented
by �, given the feature extractor parameters �, and let �
be any parameter of the �lterbank (e.g. a �lter center, gain,
or bandwidth). Since � has a physical meaning, we ensure
that its value remains positive by using the transformation

� = exp(�) (4)

We then perform the following adjustment:

�[� + 1] = �[� ]� ��U2�� (5)

where

�� =
@`(X;�;�)

@�

(6)

=

TX
t=1

QX
c=1

@`(X;�;�)

@et;c

@et;c

@�

(7)

2.5. Gradient Calculation

The key steps for �lterbank optimization are the calculation

of
@et;c

@�

, for each channel c. The general chain rule is

@et;c

@�

=

FX
f=1

@et;c

@�c(f)

@�c(f)

@�

: (8)

This signi�es that, �rst, one needs to compute the deriva-

tive
@et;c

@�c(f)
for each frequency f , before expanding to

@�c(f)

@�

according to the type of parameter �. According

to (2),

@et;c

@�c(f)
=

xt;f

log(10)Ec(xt)
(9)

where

Ec(xt) =
X
f2Bc

�c(f)xt;f

= exp
10
(et;c)

is the output energy of frame xt in the c-th channel (without
the log transformation).



training testing before after
speaker speaker adaptation adaptation
male female 80% 100%
male child 80% 90%
female male 90% 100%
female child 90% 100%
child male 50% 50%
child female 60% 70%

Table 1. Recognition accuracies for simple cross
speaker adaptation experiment
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Figure 1. Mel center frequency shift adapting fe-
male speech to male speech models

Now, let us expand
@�c(f)

@�

for the case when � repre-

sents the center frequency of a channel ĉ. Thus � = ~
ĉ =
p(
ĉ), where ~
ĉ represents the center frequency of channel

ĉ in the perceptual domain. For ~
ĉ = exp( ~
ĉ) and from (3),
it follows that

@�c(f)

@ ~
ĉ
= �2�c ( ~
c � p(f)) �c(f) ~
c �(c; ĉ): (10)

Derivation of the gradient for gain and bandwidth pa-
rameters is also straightforward and will not be elaborated
here.

3. EXPERIMENTS

3.1. Cross-gender and cross-age task

As an initial test of GPDFN a simple cross speaker vowel
recognition experiment was conducted using a Prototype
Based Minimum Error Classi�er (PBMEC) [10]. Four rep-
etitions of the 5 Japanese vowels /a/ /i/ /u/ /e/ and /o/
were collected by telephone from a male, female and child
speaker. The data was parameterized to feature vectors of
10 Mel-scale log �lterbank energies and then used to make a
set of simple (1 state, 1 \mixture") speaker speci�c models
for the 5 phonemes plus /pau/ (silence). The experiment
tested the recognition accuracy of a testing speaker's speech
on a training speaker's models, before and after adapta-
tion. The test used one half of the testing speaker's data
for adaptation and the other half for testing. The param-
eters adapted were the �lterbank centers. The results are
shown in Tab.1.
Figure 1 illustrates the e�ect of adaptation, in this case

the shifting of Mel frequency centers which occurred during
the adaptation of female speech for minimum distortion on
the male speech models. The frequency cross overs which
occurred re
ect the probabilistic nature of the adaptation.
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Figure 2. Vowel Classi�cation Error (male)

3.2. Vowel Classi�cation Task

To more thoroughly evaluate the e�ect of GPDFN on er-
ror rates, a larger experiment was conducted on the ATR
isolated word database.
Our training data contained a total of 30000 vowel seg-

ments from 2 male and 2 female speakers. Speech was pa-
rameterized to 24 �lterbank log energy coe�cients, with a
20ms frame window and 5ms frame shift.
Testing data consisted of 10000 vowel segments from 1

male and 1 female speaker not in the training set.
Experiments involved presenting varying numbers of ran-

domly selected adaptation vowels (10, 20, and 35 tokens),
with several di�erent training repetition counts (2, 10, 20
and 40 epochs) and adapting �lterbank center frequencies
to minimize distortion. The adapted �lterbank parameters
were then used to reclassifying the 10000 vowels to deter-
mine post adaptation accuracy.
Figures 2 and 3 show the e�ect the number of presenta-

tion tokens and presentation epochs have on classi�cation
error on testing data. Provided that su�cient training to-
kens are available to avoid undergeneralization, results show
a relative decrease in error rate of up to 42% for the female
(17.7% to 10.2% with 40 epochs of 35 tokens) and 23% for
the male (13.9% to 10.7% with 20 epochs of 35 tokens).
Overtraining from high repetitions of the training tokens
does not appear to be a factor until 20 or more epochs are
presented.

3.3. Phoneme Recognition Task

In order to evaluate the GPD adaptation technique on a
more realistic task, we conducted a set of phoneme recogni-
tion experiments on the ATR 5240 Japanese word database.
Multispeaker phoneme models were trained from the speech
of 5 speakers from the database, totaling 26200 utterances.
These models were 3 state 5 mixture HMMs with diagonal
covariances matrices. Input speech was sampled at 12kHz
and parameterized as 12 Mel-scale log �lter bank energy
coe�cients. In order to maintain consistency in the adap-
tation framework, the HMMmodels were not further re�ned
with Minimum Error training.
The adaptation phase consisted of a stochastic gradi-

ent based search for the set of �lterbank centers, band-
widths and gains that would yield the smallest distortion
when adaptation tokens from an unknown speaker were
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Figure 3. Vowel Classi�cation Error (female)

DP aligned with their correct transcriptions. In this super-
vised adaptation mode, varying numbers of tokens were pre-
sented, and the feature extraction parameters found were
then tested for generalization in a phoneme recognition task
using 1000 utterances from the unknown speaker. In order
to maximize the use of our data, the experiment was done
in 6 jackknife runs, each time omitting a di�erent speaker
from the training set, whose speech would then be used for
adaptation testing.
For comparative purposes, a frequency warping technique

was also evaluated. For this, an 18 point grid search over
a range of warping values (0.88 to 1.22) was conducted for
each set of adaptation tokens from the unknown speaker.
The warping value yielding the best phoneme accuracy on
the adaptation tokens was then tested for generalization
on the multi-speaker models, as with the GPD adapted pa-
rameters above. A frequency warping based grid search was
also conducted over the entire set of 1000 testing utterances.
This enabled us to see the best achievable recognition accu-
racy over the testing set by the warping-based normaliza-
tion. Tab.2 shows phoneme recognition accuracies on the
1000 test utterances as a function of the number of adapta-
tion tokens, both for warp and GPD based adaptation, and
also shows (in the right most column) the best achievable,
grid-search-based warping score over the 1000 test utter-
ance set. The results in the table clearly demonstrate that
the GPD-based normalization e�ciently improved the given
feature extractor only using a limited number of adaptation
tokens. For some speakers, such as MAU, the normaliza-
tion achieved a remarkable improvement, from about 42%
to about 55%.

4. CONCLUSION

We have described a new approach to improving classi�-
cation performance by normalizing sources of distortion in
speech recognition systems, via GPD adaptation of front
end feature extractor parameters. Experimental results
in the vowel and phoneme recognition tasks successfully
demonstrated the utility of the proposed method.
The evaluations done in this paper are still preliminary.

Further careful investigations of training settings would in-
crease stability and reduce the variation among speakers in
the experimental results. Also, the proposed normalization
idea is general enough to apply to a more powerful extrac-

adapt. adapt. no 10 80 best
speaker method adapt. tokens tokens warp
MAU warp 41.97 43.64 44.88 45.20
MAU gpd 41.97 55.36 56.86
MXM warp 60.55 60.63 60.26 60.64
MXM gpd 60.55 62.88 63.23
MHT warp 50.70 52.37 54.65 54.69
MHT gpd 50.70 52.43 57.00
FMS warp 57.31 55.75 58.06 58.46
FMS gpd 57.31 57.65 58.15
FTK warp 46.10 46.10 46.10 46.66
FTK gpd 46.10 48.89 46.21

Table 2. Phoneme recognition accuracies on 1000
test utterances

tion framework than the �lter-bank. This point can be an
important future research issue.
The warping based normalization is simple and easy to

implement, but its capability is in principle limited in com-
parison to a more general framework of GPD based adapta-
tion of feature extractor parameters. This is demonstrated
in our experimental results.
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