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ABSTRACT

In this paper a new framework for acoustic model building
is presented. It is based on non-uniform segment models,
which are learned and scored with a time bidirectional re-
current neural network. While usually neural networks in
speech recognition systems are used to estimate posterior
"frame to phoneme" probabilities, they are used here to es-
timate directly "segment to phoneme" probabilities, which
results in an improved duration model. The special MAP
approach allows not only incorporation of long term depen-
dencies on the acoustic side, but also on the phone (output)
side, which results automatically in parameter e�cient con-
text dependent models. While the use of neural networks as
frame or phoneme classi�ers always results in discriminative
training for the acoustic information, the MAP approach
presented here also incorporates discriminative training for
the internally learned phoneme language model. Classi�ca-
tion tests for the TIMIT phoneme database gave promising
results of 77.75 (82.38)% for the full test data set with all
61 (39) symbols.

1. INTRODUCTION

Speech recognition has been partially successful since it
has been treated as a general dynamic pattern recognition
problem which can approximately be solved with statistical
methods. The general recognition problem can for example
be described as follows. Given acoustic data as an utterance
U, the theoretically lowest (utterance) error rate is achieved
by evaluating the posterior probability Pr(SjU;M) for all
possible class (phoneme, word) sequences S = c1; c2; :::; cN
given our model M(~�) with parameters ~�, and picking the
output S with the highest posterior probability. The model
parameters ~� were estimated during a training process to
maximize some objective function for the training data (for
example maximum likelihood).

To handle the acoustic data in practical models, it has
to be in the form of a temporal vector sequence, where the
vectors have a �xed dimensionality. There are at least two
ways of transforming the acoustic data U into a vector se-
quenceX = ~x1; ~x2; :::; ~xN . One way is to divide the acoustic
data in short time intervals and transform the intervals into
�xed dimensional vectors. Another way is to assume some
segmentation of the acoustic data and transform the seg-
ments into �xed dimensional vectors. This approach has
for example been used in [9] and is also used here.

2. OVERVIEW

This paper consists of two major parts. The �rst part shows
how to generally estimate the posterior probability of com-
plete utterances as an alternative approach to the regular
split-up into acoustic model and language model likelihood.
The second part shows how a bidirectional recurrent neu-
ral network can e�ciently be used to model the occuring
probability terms in practice.

3. DIRECT MAP ESTIMATION OF

COMPLETE UTTERANCES

Instead of splitting up into acoustic and language model
likelihood (Pr(SjX) � p(XjS) �Pr(S)) there is the possibil-
ity of estimating the posterior probability Pr(SjX) directly
as follows. With p(x; y) = p(x)p(yjx) it can be decomposed
into:

Pr(SjX) = Pr(c1; c2; :::; cN j ~x1; ~x2; :::; ~xN )

=

NY
i=1

Pr(cijci+1; ci+2; :::; cN ; ~x1; ~x2; :::; ~xN )

| {z }
MAP-backward probability

=

NY
i=1

Pr(cijc1; c2; :::; ci�1; ~x1; ~x2; :::; ~xN )

| {z }
MAP-forward probability

One probability term within the product is the condi-
tional probability of a output class given all the input to
the right and left hand side plus the outputs on one side.
Note that these decompositions are only a simple applica-
tion of probability rules - to apply them no assumptions
concerning the shape of the distributions were made.

The two ways of decomposition of Pr(SjX) (many more
complicated decompositions are possible) are here referred
to as MAP-forward and MAP-backward probability. The
goal is to train some classi�er to estimate conditional prob-
abilities of the kind Pr(cijci+1; ci+2; :::; cN ; ~x1; ~x2; :::; ~xN ).

3.1. Model Merging

Let's assume there are trained models which give estimates
for Pr(SjX) for both decompositions. Since neither of the
estimates will be perfect, a better estimate can be achieved
by merging the two estimates somehow. One way of merg-

ing opinions of di�erent experts is to assume the opinions



to be independent which leads for probabilities to a geomet-
ric averaging or alternatively to an arithmetic averaging in
the log-domain. This process is referred to as logarithmic

opinion pooling [3]. It should be noted that it is in general
very di�cult to create experts with independent opinions
which justify such a merging approach. For example, in
real applications the di�erent experts are usually trained
on the same data set which represent possible samples from
the underlying distribution. This makes the experts already
dependent. Although, in practice the dependency is often
negligible for a small number of experts.

4. BIDIRECTIONAL RECURRENT NEURAL

NETWORKS

Neural networks are excellent tools for general conditional
probability estimation. It has been shown a number of times
(for example [1, 2]) that neural networks can estimate for
input distribution X and output distribution Y at least the
conditional average EfY jXg for regression problems and
the conditional probability of class membership PrfY jXg

for classi�cation problems.

In speech recognition, for the estimation of posterior
"frame to phoneme" probabilities especially recurrent neu-
ral networks (RNNs) have been very successful [4], because
they allow e�cient parameter sharing and make e�cient use
of context. Training and usage is not more complicated than
for regular NNs with for example MLP or TDNN structure,
since the RNN can be unfolded in time into a feed forward
network. A typical structure can be seen in Fig.1.
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Figure 1. Regular (uni-directional) recurrent neural

network structure (RNN)

Recurrent neural networks of that type have the princi-
pal disadvantage that they can only make use of context
information in one time direction (of the past with respect
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to the time axis). This restriction can partially be loosened
by delaying the output by a prede�ned number of frames to
partially include future context. Although this method is
successfully used in practice [4], there is still the limitation
of only using context up to a preset future frame. To make
use of all available context it is possible to train two dif-
ferent networks, one in each time direction, and merge the
results [5]. If the two networks are assumed to be indepen-
dent experts, then a logarithmic opinion pooling with the
possible disadvantages like discussed above can be applied.
A more elegant approach to using all available context is

a bidirectional recurrent neural network (BRNN) [8], which
can be trained in both time directions simultaneously and
hence avoids the di�cult procedure of mixing dependent
experts. The general structure can be seen in Fig.2. For
model problems the BRNN structure has lead to better re-
sults than the mixture of two regular uni-directional RNNs
trained separately for each time direction [8].

A slightly modi�ed BRNN structure can e�ciently be
used to estimate conditional probabilities of the kind
Pr(cijc1; c2; :::; ci�1; ~x1; ~x2; :::; ~xN ). A visualization of the
estimation problem can be seen in Fig.3. There are contin-
uous ( ~x1; ~x2; :::; ~xN ) and discrete inputs (c1; c2; :::; ci�1).
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Figure 3. Visualization of the estimation problem

for the MAP-forward probability

Let's assume that the input for a speci�c time i is coded
as one long vector containing the target class ci and the
continuous inputs ~xi, with for example the discrete input
ci coded in the �rst K dimensions of the whole input vec-
tor. If the �rst K weight connections from the inputs to the
backward states and the inputs to the outputs are cut, then
only discrete input information from t < i is used to make
predictions. This is exactly what is required to estimate
the terms within the MAP-forward probability expression.
Fig.2 illustrates this change of the original BRNN architec-
ture. Cutting the input connections to the forward states
instead of the backward states gives the architecture for
estimating the MAP-backward probability.

5. EXPERIMENTS & RESULTS

To test the direct MAP approach with bidirectional RNNs
as probability estimators the TIMIT phoneme database was
chosen. Because a complete decoder is not yet available,
classi�cation tests were performed.

5.1. Feature Extraction

Feature extraction is used on three levels. First, frame fea-
tures are extracted to represent the raw waveform in a com-

pressed form. Then, with knowledge of the boundary loca-
tions, segment features are extracted to map the informa-
tion from an arbitrary length segment to a �xed dimensional
vector. A third transformation was applied to the segment
feature vectors to make them suitable as inputs to a neural
net.

5.1.1. Frame Feature Extraction

As frame features 12 regular MFCCs (24th order) plus
the log-energy were extracted at every 10ms with a 25.6ms
Hamming window and a preemphasis of 0.97.

5.1.2. Segment Feature Extraction

From the frame features the segment features were ex-
tracted as the simple integrals of �ve equally spaced regions
within the segment for each of the 13 frame features. The
function values between the data points were linearly in-
terpolated. The duration of the segment was an additional
segment feature which resulted in a 66-dimensional segment
feature vector.

5.1.3. Neural Network Preprocessing

Although feed-forward neural networks can principally
handle any form of input distributions it was found in the
experiments here that best results are achieved with Gaus-
sian input distributions which matches the experiences from
[4]. To generate an "almost-Gaussian distribution" the in-
puts were �rst normalized to mean zero and variance one on
a sentence basis, and then every channel was vector quan-
tized with 256 codebook vectors (1 byte) so the entropy of
the channel was a maximum for the whole training data.
The maximum entropy codebooks can easily be found for
the one-dimensional arrays because an array can be split up
in regions which have (almost) the same number of samples
each. For presentation to the network the byte-coded value
was remapped with value = erf�1(2 � (byte+1=2)=256� 1),
(erf�1 is the inverse error function, erf() is part of math.h)
which produces on average a distribution that is similar to
a Gaussian distribution.

5.2. Experiments & Results

The experiments were performed on the full TIMIT data
set. Training was done on the 462 training speakers (142910
phonemes), testing on the remaining 168 test speakers
(51681 phonemes). To include the output class informa-
tion the original 66-dimensional feature vectors were ex-
tended to 72 dimensions. In the �rst six dimensions the
corresponding output class was coded in a binary format
(binary [0,1] ! network input [-1,1]). Two MAP-BRNN
structures were trained as classi�ers (softmax output func-
tion, cross-entropy objective function) with 500 steps of re-
silient propagation [7], extended to a RPROP through time
variant, one for each time direction. All neurons but the
output neurons had the tanh activation function. The for-
ward MAP-BRNN had 64 forward and 32 backward states.
Additionally 64 hidden neurons were implemented before
the output layer. The backward MAP-BRNN was symmet-
rical to the forward MAP-BRNN (32 forward, 64 backward
states), leading altogether to 2 � 26333 weights. The net-
works were trained to give estimations for the probability
terms within the product of the MAP-forward and MAP-
backward probability. The probabilities coming from the



networks were merged as a linear and logarithmic opin-
ion pool. Tab.1 and Tab.2 show the phoneme classi�ca-
tion results for the full training and test set. Although the
database is labeled to 61 symbols, a lot of researchers have
chosen to map them to a subset of 39 symbols. Here results
are given for both versions, with the results for 39 symbols
being simply a mapping from the results obtained for 61
symbols. Details of this standard mapping can be found
in [6]. The slightly better results for the logarithmic opin-
ion pool show that it is at least reasonable to assume the
experts as independent, although they were trained on the
same data set.

SET-UP Rec-Rate Rec-Rate
TRAIN 61 TEST 61

for MAP-BRNN 79.11 % 72.70 %
back MAP-BRNN 79.38 % 72.74 %
both merged, lin 83.57 % 77.53 %
both merged, log 83.89 % 77.75 %

Table 1. Classi�cation results for full TIMIT train-

ing and test data with 61 symbols for di�erent neu-

ral network SET-UPs

SET-UP Rec-Rate Rec-Rate
TRAIN 39 TEST 39

for MAP-BRNN 84.42 % 79.08 %
back MAP-BRNN 83.27 % 77.44 %
both merged, lin 87.17 % 82.11 %
both merged, log 87.45 % 82.38 %

Table 2. Classi�cation results for full TIMIT train-

ing and test data with 39 symbols for the di�erent

neural network SET-UPs (mapped from the results

obtained for 61 symbols)

6. DISCUSSION

The framework presented here shows how it is possible
to estimate directly the posterior probability of continu-
ous phoneme utterances without splitting into acoustic and
language model likelihood. The resulting conditional prob-
abilities can in practice e�ciently be estimated with a bidi-
rectional recurrent neural network without making any ex-
plicit assumptions about how much context is important,
neither in the input nor in the output space. Because a NN
is used for the conditional probability estimation, there are
very little assumptions about the shape of the distributions.
The segment based approach insures the proper handling of
duration - it is just another feature for the classi�er. The
NN-MAP decoding approach results in discriminative train-
ing, also for the internal phoneme language model, and au-
tomatically in context dependent models. The complexity
of the system is only controlled by the complexity of the
neural net.
Several improvements are possible. The segment feature

extraction is simple compared to the sophisticated tech-
niques used in [9]. Compared to frame based approaches
which try to preserve all input information until decoding,

it is very likely that during this simple segment feature ex-
traction important information is lost.
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