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ABSTRACT

A novel speech separation structure which simulates the
cocktail party e�ect using a modi�ed iterative Wiener �lter
and a multi-layer perceptron neural network is presented.
The neural network is used as a speaker recognition system
to control the iterative Wiener �lter. The neural network
is a modi�ed perceptron with a hidden layer using feature
data extracted from LPC cepstral analysis. The proposed
technique has been successfully used for speech separation
when the interference is competing speech or broad band
noise.

1. INTRODUCTION

Human beings have the ability to concentrate on speech of
interest while suppressing sound from other sources. This
emphasis on a particular sound source and rejection of the
other sound sources has been referred to as the cocktail
party e�ect or \attentional selectivity". In 1953, Cherry
reported his pioneering research work on this problem [1].
He found that the di�erence between the signals arriving at
the two ears is essential for the cocktail party e�ect. Cherry
mentioned several factors that he thought would have con-
tributed to separate the desired voice from others. Some of
those factors were raw physical qualities of the speech, but
others had to do with the ability of the listener to predict
the next moment of speech from the previous one. It is still
not clear as to whether this ability to predict is really used
in segregating desired speech from other sources. However,
there is no doubt that the listener's knowledge of the voice
and language governs the process of concentrating on a par-
ticular speech [2].

Several theories were invoked to account for the cocktail
party e�ect demonstrated by Cherry. However, they were
all similar in many ways. They all postulated that the phys-
ical properties of one of the voices could be used by the lis-
tener's attention to select that voice, and those properties
include the locations of sources, the quality of voices, the
pitch, timbre as well as loudness. Further theoretical study
on this problem is being conducted.

Experiments have been carried out to understand and dupli-
cate the ability of attentional selectivity for speech acquisi-
tion, enhancement and recognition [3]. These methods use
dual microphones or a microphone array and are derived
from \the binaural perception scene" which is related to

the phase di�erence between the signal arriving at the two
ears. Under some conditions this processing has exceeded
our natural ability to discriminate a desired speech signal
from a distracting background. Most of these processes,
however, introduce distortion into the resulting processed
signal [4]. These methods have found limited applications
in real speech enhancement and recognition because they
were only based upon the phase information and failed to
take many other factors mentioned above into account in
the simulation of the cocktail party e�ect.

In this paper, we use more information related to the cock-
tail party e�ect to simulate it for speech enhancement based
on two channel observations in which the relative levels of
the desired speech and interference are di�erent. Our key
idea is to use a single or a number of modi�ed multi-layer
perceptron neural networks as a speaker discrimination unit
(speech classi�er) to control an iterative �lter. At the begin-
ning of the iterative �ltering for each block, a step factor �
in the modi�ed Wiener �lter is chosen according to the dif-
ference between the desired speaker recognition rate of the
main channel input and that of the reference channel input.
The iterative �ltering then continues until the recognition
rate receives its �rst maximum (or the optimal) value. It
has been found that the iterative process uniformly con-
verges towards the �rst maximum (or the optimal) recog-
nition rate and best quality simultaneously under several
conditions that were tested.

2. METHODOLOGY

The proposed system has a structure depicted in Fig.1. The
speech data acquisition system supplies both main chan-
nel and reference channel signals to the modi�ed iterative
Wiener �lter. The data acquisition system may consist of
two microphones or alternatively a dual beamformer based
on a microphone array to obtain the two channels of in-
put. Each of the two channels will contain both the de-
sired speech and interference but with di�erent signal-to-
interference (or signal-to-noise) ratios. In the case where
the data acquisition is carried out by a single microphone
system and the interference is broad band noise (which
can be modelled as a wide-sense stationary random pro-
cess), the reference channel signal can be extracted from the
non-speech segments of the acquired signal. The iterative
Wiener �lter attenuates the interference components con-



tinuously while maintaining the desired speech at a certain
level of magnitude for each frame of the main channel signal
until the neural network decides that the average quality of
the �lter output at the current iteration is the best for the
frames of a block.

2.1. Iterative Wiener �lter

An enhancement system based on an iterative Wiener �l-
ter using the estimation of all-pole speech parameters was
investigated by Lim, Oppenheim, Hansen and Clements [4,
5]. This approach attempts to solve for the maximum a

posteriori (MAP) estimate of a speech waveform in addi-
tive Gaussian noise, with the requirement that the signal
be the response from an all-pole process. The frequency
response of the non-causal Wiener �lter is

H(!) =
Ps1(!)

Ps1(!) + Ps2(!)
(1)

where Ps1(!) and Ps2(!) are power spectral densities of the
desired signal s1(t) and the noise s2(t), respectively. Obvi-
ously, the Wiener �lter of Eq.1 cannot be applied directly to
estimate the desired signal since the spectrum Ps1(!) can-
not be assumed known, even if s2(t) has been assumed to
be a stationary process with a priori Gaussian probability
density function and can be extracted from non-speech seg-
ments. A traditional iterative approach takes the spectrum
of noisy speech Y (!) or the spectral subtraction estima-

tor Ŝ1(!) as an estimated spectrum at the beginning of the
loop and uses it to form an iterativeWiener �lter. Although
successful in a mathematical sense, these techniques have
received little application in practice. The main drawback
of these techniques is that no e�ective procedures exist to
create a convergence criterion in environments requiring au-
tomatic speech enhancement [5].

Recently Hansen, Clements and Nandkumar have devel-
oped a constrained Wiener �ltering system for which the
convergence criterion is based on objective speech quality
measures [5]. Such measures are formed by a weighted com-
parison of actual and resulting estimated LPC predictor co-
e�cients found during enhancement. The obvious problem
with such a criterion for practical applications is that, the
actual speech is unknown during the procedure. Hansen et

al have found some experiential termination point for the
iteration. Note that the constrained Wiener �lters studied
by Hansen et al in both single and dual channel systems are
based on an a priori assumption: The interference is a non-
speech-like additive background noise. The methods, in-
cluding the convergence criterion employed in the systems,
cannot enhance a noisy speech which has been corrupted
by competing speech.

In our approach, the disadvantage of the traditional Wiener
�lter has been overcome successfully by use of a neural net-
work controller. Our system can work in both situations
where speech has been corrupted by stationary non-speech-
like noise or by competing speech.

For a dual channel system shown with a coupling function

H(!) =

�
H11(!) H12(!)
H21(!) H22(!)

�
(2)

the form of the modi�ed Wiener �lter and the control proce-
dure with the neural network is achieved as follows: Firstly,
to obtain an e�ective and smooth iterative �ltering, the ith
iteration of the Wiener �lter of Eq.1 is modi�ed by adding
a time varying parameter �i which controls the \step" of
�lter as follows:

H
(i)(!) =

(1 + �i)P
ŝ
(i)

1

(!)

P
ŝ
(i)

1

(!) + �i(jĤ11(!)j=jĤ21(!)j)2Py2(!)
(3)

and

Ŝ
(i+1)

1
(!) = Ŝ

(i)

1
(!)H(i)(!) for i = 0; 1; � � � (4)

The ratio (jĤ11(!)j=jĤ21(!)j)
2 can be calculated from the

non-interference segments. Ŝ
(i)

1
(!) is the spectrum of the

�ltered (at the ith iteration) speech signal ŝ
(i)

1
(t). At the

beginning of the iterative loop for each block, ŝ
(0)

1
(t) is re-

placed by y1(t).
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Fig.1. Structure of the proposed speech enhancement sys-

tem. The data acquisition system could be a pair of micro-

phones, a microphone array or a single microphone.

The coe�cients of the modi�ed Wiener �lter change frame
by frame (short term) while the factor �i is updated block
by block (long term). For each block, �0 may be chosen ac-
cording to the di�erence between the signal-to-interference
ratio of the main channel input y1(t) and that of the ref-
erence channel input y2(t). An alternative method which
we use in our system for the factor �0 is based on the dif-
ference between the recognition rates of the two channels.
Here, the recognition rate is de�ned as the proportion of
the number of frames, within a block, which are recognised
as the desired speech. For example, the recognition rate of
the single binary classi�er model (SBCM) is de�ned as

Rrec =M0=M (5)

where M is the number of frames in a block, M0 is the
number of frames within the block which are recognised as
the desired speech.

After the main channel input y1(t) is substituted for ŝ
(0)

1
(t)

at the beginning of the iterative loop, the iterative �lter-
ing loop (Equations 3 and 4) continues until that it is ter-
minated when the neural network decides that the output
signal is the closest to the desired voice, i.e., when the recog-

nition rate of ŝ
(i)

1
(t) receives its �rst maximum value.

For the single channel system, the modi�ed Wiener �lter
Eq. 3 is simpli�ed as

H
(i)(!) =

P
ŝ
(i)

1

(!)

P
ŝ
(i)

1

(!) + �iPŝ2(!)
(6)



where Pŝ2(!) is the power spectrum of the reference sig-
nal ŝ2(t) which may be extracted from the non-speech seg-
ments. The value of �0 in this single channel system can be
chosen according to the recognition rate of the main channel
input.

2.2. Arti�cial Neural network (ANN)

The ANN adopted in this study is the Logicon Projection
Network (LPN) distributed by Neuralware Inc. [6, 9]. The
basic structure of LPN is shown in Fig. 2. This network
model projects the Nin dimensional input vectors of a stan-
dard feed forward neural network onto a hypersphere in a
higher dimension (Nin + 1) space before implementing a
modi�ed back-propagation algorithm. The Logicon Pro-
jection Network utilises a modi�ed back-propagation algo-
rithm for training.

Input vectors for neural network training are the param-
eterised speech as well as alternative data. The alterna-
tive data may consist of parameterised speech from compet-
ing speaker(s) and reference speech signals, or background
noise. The parametrisation is created by use of Linear Pre-
dictive Coding (LPC) cepstral analysis [7].
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Fig.2. Logicon Projection Network. The input vectors are

projected to vectors in one higher dimension

2.3. Architecture of the classi�er

2.3.1. The single binary classi�er model

An SBCM, which consists of a single LPN, used to calculate
the recognition rates of the enhanced speech for each itera-
tion is shown in Fig. 3. In this model, the speech of the de-
sired speaker and the speech of the competing speaker (for
co-talker separation) or noise (for background noise cancel-
lation) is parameterised and concatenated to form training
vectors. At the test stage, the enhanced speech is parame-
terised before it is input into the classi�er. It is found that
recognition rate increases iteration by iteration before the
output of the Wiener �lter receives the best quality. After
the output receives the best quality, the enhanced speech
will be over-�ltered and its quality will be degraded if the
iterative process goes too far.

It has been found after a large amount of simulation tests
that there is a high correlation between the quality of en-
hanced speech signal and the recognition rate for each it-
eration. However, even though the over-�ltering degrades
the quality of the desired speech, it depresses the compet-
ing speech further at the same time. This may cause the

SBCM to select an incorrect point for termination of the
iterations in some cases for co-talker separation.
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Fig.3.Single binary classi�er model with a single LPN.

2.3.2. The multiple binary classi�er model

To improve the accuracy of classi�cation and the robustness
of the system for co-talker separation, the SBCM can be
replaced by the multiple binary classi�er model (MBCM).
The motivation for developing the MBCM in the proposed
speech enhancement system is derived from statistical anal-
ysis. The architecture of MBCM as shown in Fig.4, consists
of a set of LPNs. In this model, the top LPN is trained
with the parameterised data formed by the speech of the
desired speaker and the speech of the competing speaker.
The rest of the LPNs are trained with the data formed by
the speech of the desired speaker and that of one of the
reference speakers, respectively. The reference speakers are
chosen arbitrarily from a database.
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Fig.4. Multiple binary classi�er model with N LPNs.

The enhanced speech after each iteration is parameterised
and then fed to all trained LPNs. If M0 frames among M
frames are classi�ed by the top LPN as the desired speech
and M1 � � � MN�1 frames are classi�ed by the other LPNs
as the desired speech, respectively, the recognition rate of
the MBCM for the output at this iteration is de�ned as

Rrec
def

=
2

N + 1

 
M0

M
+

1

M

 
N�1X
i=1

Mi � (N � 1)
M

2

!!

(7)
or

Rrec
def

=
2

(N + 1)M

N�1X
i=0

Mi �
N � 1

N + 1
(8)

where N is the number of LPNs and M is the frames of the
block (or utterance). The last term in Eq.7 (as well as in
Eq.8 ) is an unbiasing factor.



3. SIMULATION TESTS

A large number of tests have been carried out to verify
the performance of the proposed system. The relationship
between the convergence of iterative processing and the im-
provement of quality has been examined. The improvement
in speech quality for the desired speech was measured by
both objective measurements and informal listening tests.
The objective measurements for the speech quality used in
the study include traditional objective speech quality mea-
sures such as the logarithmic area ratio (LAR), the logarith-
mic spectral distance (LSD), Itakura ratio (IR) and the seg-
mental signal-to-noise ratio (SNRseg). Details about these
measures may be found in [8].

A set of experiment for separation of co-talkers was ar-
ranged as follows: All utterances of a total of 40 speakers
were extracted from the TIMIT database (female and male
speakers from dr1 and dr2, with sampling rate of 16kHz).
For each speaker, all utterances were concatenated together
to form a speech signal. The �rst 14.4 seconds (i.e., 230,400
samples) of each speech signal were used to create the train-
ing data and the corresponding test data was selected from
the rest of the signal. Each ten speech signals were grouped
together for a test: one as the desired speech signal, one as
the competing speech signal and the other 8 speech signals
as the reference signals.

(A) Single Binary Classi�er Model):

Iteration iM � 2 iM � 1 iM iM + 1 iM + 2
LAR 1.5 20.9 75.6 2.0 0
LSD 1.5 20.9 76.1 1.5 0
IR 2.0 22.4 75.1 0.5 0

SNRseg 1.5 18.9 77.1 2.5 0

(B) Multiple Binary Classi�er Model):

Iteration iM � 2 iM � 1 iM iM + 1 iM + 2
LAR 0 3.5 95.0 1.5 0
LSD 0 3.5 95.5 1.0 0
IR 0 6.0 93.5 0.5 0

SNRseg 0 2.0 95.0 3.0 0

Table 1. Percentage coincidence between the �rst maximum

recognition rate and the quality measures.

For each quality measure the percentage of tests which ob-
tained the best quality at iterations centred around iM is
seen in the columns of Table 1. The top one (A) shows the
results for the single binary classi�er model and the bot-
tom one (B) shows the results when the multiple binary
classi�er model was used. Note that iM is the iteration at
which the output of the enhanced speech received its the
�rst maximum recognition rate.

For cases when the SBCM is used, it can be seen from
the table that the percentage coincidence between the �rst
maximum recognition rate and the best quality measures is
about 76%. It has been found that the SBCM recognition
rate may receive its �rst maximum value one iteration after
the quality measures had got their best values in some tests.
This error is eliminated by use of the MBCM. In fact, the
percentage coincidence between the maximum recognition
rate and the quality measures increased to 95% (average for

the all quality measures listed in Table 1B at iteration iM).

4. CONCLUSION

We have described the principles and structure of a speech
enhancement system in which a neural network simulates
the cocktail party e�ect of the human auditory perception
system. The neural network controls an iterative Wiener
�lter which enhances the corrupted speech signal from ob-
servations. Both objective and subjective measures (infor-
mal listening) have been utilized to evaluate the perfor-
mance of the proposed system. The test results have shown
that the proposed system is powerful and reliable for speech
enhancement because of the use of the neural network to
mimic the human auditory perception system. A limita-
tion of the method is that su�cient quantity of the desired
speakers' speech samples must be available to train the sys-
tem.
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