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ABSTRACT

For technical speech recognition systems as well as for hu-
mans it has been shown that the combination of acoustic
and optic information can enhance speech recognition per-
formance. But it still remains an open question, at which
stage of processing the two information channels should be
combined.
In this paper we systematically investigate this problem
by means of a neural speech recognition system applied to
monosyllabic words.
Di�erent fusion architectures of multilayer perceptrons are
compared both for noiseless and noisy acoustic data. Fur-
thermore, di�erent modularized neural architectures are ex-
amined for the acoustic channel alone. The results corrob-
orate the idea of separate processing of the two channels
until the �nal stage of classi�cation.

1. INTRODUCTION

It has been shown that the combination of acoustic and op-
tic information is useful to enhance speech recognition abili-
ties in machine speech recognition systems [1][2][3][4][5] as
well as in humans especially in the presence of acoustic noise
[6][7][8]. But still there is the problem to determine at which
stage of processing the two streams of information should
be combined. Several experiments [9][3][10] suggests, that
in technical systems the combination at the stage of class
hypotheses should be preferred. Furthermore this seems the
more likely model for the human perceptual system [11] but
see [12] for a di�erent view.
In this paper we report on a systematic study of neural
fusion architectures composed of multilayer perceptrons
(MLPs). As in other studies, the number of data is small
compared to the number of parameters, which have to be
determined, so we have done crossvalidation experiments to
get more reliable estimates for the network performances.

2. RECOGNITION SYSTEM

The comparison of architectures is carried out in the frame-
work of the word recognition system shown in Fig.1, which
can be considered as a syllabic recognition system and used
in this study for a small vocabulary recognition task: the
recognition of monosyllabic words. The main features of
the system are:
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Figure 1. Word recognition system

� The recognition of a syllable is mainly based on its
initial and �nal segment, which cover the important
transitions from the consonantal clusters into the cen-
ter of the syllable [13].

� Timespans longer than the often used 10 - 20 msec
should be used, to include longer timedependencies.
Therefore we use a timewindow of 100 msec.
A MLP is trained to classify the initial and �nal seg-
ments. In the testing phase the timewindow is shifted
over the signal and the MLP generates a sequence of
segment hypotheses.

� Temporal integration of this sequence and the �nal
decision is the task of an associative memory. The
sequence of symbols is coded by the symboltriples it
contains. The system decides in favour of the class
with the best match of the actual and stored vector of
symboltriples. This scheme is described in a slightly
di�erent framework in [14].

The comparison of fusion architectures, which are discussed
below, is done for the stage of segmentclassi�cation.



net recognition recognition
(no. of rate rate
weights) (training) (test)

A 94.51 (1.11) 85.86 (1.66)
(7600)

V 61.76 (3.40) 54.46 (2.80)
(3400)

AV-O 98.84 (0.25) 90.27 (1.39)
(12800)
AV-H 94.76 (1.22) 86.96 (2.34)
(11000)

AV-I 76.77 (8.56) 73.49 (6.88)
(19800)

Table 1: Average recognition rate [%] of neural

fusion architectures

3. DATA AND PREPROCESSING

The database consists of the acoustic and optic signals of
the 26 spoken letterwords of the German alphabet. 1255
letterwords were uttered by one speaker. The polysylla-
bic letterword "Ypsilon" was excluded from the data. This
leads to 25 word classes and 30 classes of initial and �nal
segments.
The acoustic signals are preprocessed by a bank of 16 �lters
with centerfrequencies equally spaced on a bark scaled fre-
quency axis. The bandwidth of each �lter corresponds to
the critical bandwidth of the human auditory system. The
resulting spectrogram is calculated every 10 msec. The op-
tic signal is sampled roughly every 33 msec and represented
by an average hal�mage of the lip-region. The inputvector
of the system consists of a segment of 10 frames of the spec-
trogram and the hal�mage of the �rst frame (160 acoustic
input features, 140 optic input features).

4. EXPERIMENTS

In the context of MLPs the combination of the acoustic
and optic information can be done at three layers of the
individual MLPs:

� combination of the output layers (AV-O)

� combination of the hidden layers (AV-H)

� combination of the input layers (AV-I).

For these di�erent architectures 5-fold crossvalidation ex-
periments have been performed. For each crossvalidation
dataset we use 5 di�erent initializations for the MLPs. This
leads to 25 experiments for each architecture. All nets are
trained for 1000 epochs with Backpropagation. In the ta-
bles of the next sections the average performance of these
nets and in parenthesis the standard deviation are given.

net recognition recognition
(no. of rate rate
weights) (training) (test)

totaly
conn. 94.62 (1.58) 85.67 (1.57)
(5700)

modular
frame 96.84 (0.43) 86.92 (1.47)
(1380)

modular
frequency 96.25 (0.42) 86.46 (1.23)
(1280)

random 96.86 (0.41) 86.62 (0.99)
(1380)

Table 2: Average recognition rate [%] of modular

acoustic nets

Primary experiments with di�erent topologies for the indi-
vidual channels show small di�erences of performance over
a wide range of the number of hidden units and reveal the
best performance in case of about 40 hidden units for the
acoustic channel and 20 hidden units for the optic channel.
Thus in our experiments the single channel networks have
160 input, 40 hidden, 30 output units and 140 input, 20
hidden, 30 output units, respectively. The combined layers
contain 300 input units and 60 hidden units in the corre-
sponding cases. In the AV-O architecture the output layers
of the two channels are combined into a �nal output layer
of again 30 units.
Three di�erent series of experiments have been performed:
1. fusion architectures in the case of a noiseless acoustic
channel
2. modularization of the acoustic channel
3. fusion architectures in the case of a noisy acoustic chan-
nel.

5. RESULTS

Table 1 gives the results of the �rst experiments. Even in
the noiseless case the optic information improves recogni-
tion performance for most architectures compared to the
recognition performance of the acoustic channel alone.
The only exception is architecture AV-I. The reason for the
low recognition performance can be twofold: (1) the net has
to be trained further or (2) the number of weights is large
compared to the available data. Further training however

shows only slight improvements of performance in the range
of 2%. To study the second possibility, we randomly elimi-
nate connections between input and hidden layer so that the
number of connections is equal to the number of connections
in AV-H.
Thinning out connections yields recognition rates of 94.60%
(1.70%) for the training and 85.41% (2.03%) for the test set,
i.e. a considerablly better performance which is similar to
that of AV-H.
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Figure 2. Average performance of neural fusion ar-

chitectures in the presence of noise

In an accompanying experiment with the acoustic net
alone we �nd the same e�ect, if we compare di�erent mo-
dularization techniques (modularization with regard to fra-
mes and frequency channels) and a net, we randomly thin-
ned out. Table 2 indicates that regardless of the kind of
weight elimination all nets with less weights than the fully
connected acoustic net (1) perform about equally well and
(2) show slight improvements of performance compared to
the fully connected network.
The results of both experiments suggest that the fully
connected nets performs less because of the large number
of connections.
Table 1 shows, that AV-O outperforms AV-H by roughly
4%, despite the fact that the number of connections is lar-
ger in the �rst case. A more signi�cant enhancement of 8%
can be observed, if one compares the class-speci�c recogni-
tion rates. This is due to the fact, that this measure equally
considers all classes, which are not evenly distributed in our
dataset. Compared to the acoustic channel, the improve-
ment is about 4% for segment classi�cation. The result for
the �nal decision of the associative memory is 93.23% word
recognition performance compared to 90.04% word recogni-
tion performance of only the acoustic channel.
This suggests, that the separate processing of the two chan-
nels up to the stage of class hypotheses seems more favoura-
ble. To decide this de�nitely we will carry out experiments
with more data and with MLPs which have comparable
numbers of weights between the di�erent layers.
In a third series of experiments we investigated the in
u-
ence of acoustic noise for the architectures AV-H and AV-O.
We compare the performance to the acoustic channel alone.
All MLPs were initialized by the weights that were learned
in the noiseless case. We modularize the acoustic channel
with regard to frames. The results are the following: 1.
The trainingcurves (not shown here) indicate that further
training the nets with noisy data considerably improves the
performance. 2. For all signal-to-noise-ratios (SNR) the
combination of the outputlayers shows a better improve-

ment than the combination of the hidden layer compared
to the acoustic channel alone. 3. For very low acoustic SNR
the fusion architectures perform less than the visual chan-
nel alone (horizontal line in Fig. 2).
In summary, our �ndings corrobarate the idea that in audio-
visual speech recognition the optic and the acoustic chan-
nel should be processed separately until the �nal stage of
classi�cation. This corresponds to the supposition that the
stochastic 
uctuations disturbing the two channels are inde-
pendent. However the combination should not necessarily
be a single weighted average of the two classi�cations, be-
cause the confusion matrices of the two channels need to be
taken into account.
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