
A COMPARISON BETWEEN RECURRENT NEURAL NETWORK ARCHITECTURES

FOR DIGITAL EQUALIZATION

Jorge D. Ortiz-Fuentes1 Mikel L. Forcada1

1Universitat d'Alacant,
Dept. Llenguatges i Sistemes Inform�atics,

E-03071 Alacant (Spain).

ABSTRACT

This paper shows a comparison between three di�erent
�rst-order recurrent neural network (RNN) architectures
(fully recurrent, partially recurrent, and Elman), trained
using the real-time recurrent learning (RTRL) algorithm
and the GSM training sequence ratio (26=114) for digital
equalization of 2-ary PAM signals. The results show no sub-
stantial e�ect of the particular architecture or the number
of units on the overall performance. This is due to the as-
sumption of a suboptimal equalization scheme by the RNNs,
because of the learning algorithm. The results are compared
to those obtained using a classical (decision-feedback equal-
izer) approach.

1. INTRODUCTION

When digital signals are transmited through a communica-
tion channel, one of the problems that arises is intersymbol
interference (ISI). ISI is mainly due to multipath distortion
(the fact that signals arrive with di�erent delays due to the
presence of di�erent propagation paths) or to the restric-
ted bandwidth of the channel. The signal must then be
reconstructed at the receiver by using an equalizer that ap-
proximates the inverse of the �lter modelling the channel.
When channel conditions are not stationary, the need for an
adaptive equalizer arises. We will focus on trained adaptive
equalizers, that is, those that transmit a training sequence
of bits known both to the transmitter and to the receiver,
which the equalizer uses to learn how to reverse the e�ect
of the channel on the original signal.

Many kinds of trained adaptive equalizers have been de-
scribed: some of them are based on statistical methods,
others are based on linear system theory, such as the linear
transversal equalizer (LTE) and the decision feedback equal-
izer (DFE)[1]. Neural networks (NN) |a natural choice
for an adaptive, trainable system| have recently been ap-
plied to this �eld achieving better performance than clas-
sical methods in some aspects[5, 6]. In particular, recurrent
neural networks (RNN) are, in some respects, very similar
to DFEs in that outputs are fed back to the classi�er to
assist in subsequent decisions[2, 3]; however, unlike DFEs,
RNNs may store additional information about the past sig-
nals in the form of an internal state, that is, their behavior
may not be explained solely in terms of a �nite window of
inputs and outputs.

This summary describes a comparison among three clas-

sical RNN architectures for a digital equalization task. Sec-
tion 2 describes the network architectures used. Section 3
describes the parameters of the simulations and presents the
results. Finally, the conclusions are given in Section 4.

2. NETWORK ARCHITECTURES

We have chosen three classical �rst-order recurrent neural
architectures: a simple, fully recurrent NN used by Ke-
chriotis et al.[6], a partially recurrent neural network used
by Robinson and Fallside[7] for speech recognition pur-
poses, and an augmented recurrent architecture having a
layer mapping states to outputs, used by Elman[4] to study
temporal sequences. All the architectures are single-input,
single-output (SISO) and have N hidden state units. The
input, the state of the i-th hidden unit, the network output,
and the desired output at time t are denoted by u[t], xi[t],
y[t], and d[t] respectively. The state vector will be denoted
by x[t].
The equations describing these architectures are:

Fully recurrent (FR) NN:

x[t] = FN;N+1(x[t� 1]; u[t]);

y[t] = x1[t]:

Partially recurrent (PR) NN:

x[t] = FN;N+1(x[t� 1]; u[t]);

y[t] = F1;N+1(x[t� 1]; u[t]):

Elman RNN:

x[t] = FN;N+1(x[t� 1]; u[t]);

y[t] = F1;N (x[t]):

where Fi;j stands for a single-layer perceptron having i out-
puts and j inputs, and therefore ij weights and i biases.
The total number of parameters (weights and biases) for
each network is: FRNN, N2 + 2N ; PRNN, N2 + 3N + 2;
Elman NN, N2+3N+1. The activation function of all units
is the hyperbolic tangent.
These architectures are trained by using Williams and

Zipser's [8] real-time recurrent learning (RTRL) algorithm
which updates weights every time a target or desired output
is supplied.



3. SIMULATION CONDITIONS AND

RESULTS

3.1. E�ects of the architecture

Two kinds of simulations were done to test the e�ects of
architecture and number of hidden units. The training se-
quence ratio for all of them was 26/114, the same as in the
Global System for Mobile communications (GSM) stand-
ard (training sequences alternate with data) [9]. Every
single simulation was run over 1000 GSM blocks of random
data contaminated with additive white Gaussian noise and
�ltered through two di�erent channel models: a minimum-
phase channel (H(z) = 1 + 0:7z�1) and a non-minimum-
phase (NMP) channel (H(z) = 0:3482 + 0:8704z�1 +
0:3482z�2). The decision delay was set to the delay of the
signal with the highest energy. The learning rate chosen was
� = 0:1 after preliminary experimentation, and a weight de-
cay factor of 
 = 0:001 [10] was applied. Digital values �1
and +1 are represented by neural outputs �yp and +yp,
with yp = 0:9. Results for each case are averaged over
10 simulations each, and each simulation starts with small
random weights and biases around 0.0.

For the architecture comparison, a network with N = 3
hidden units was selected for each network design (fully con-
nected, partially recurrent, and Elman nets). The number
of adjustable parameters (weights and biases) is comparable
(15, 20, and 19 respectively). Figure 1 shows the bit-error-
rate (BER) performance vs. signal-noise ratio for each ar-
chitecture. The perfomance is almost undistinguishable, a
surprising result in view of the apparent di�erences both in
representational capability.

We then set out to assess the e�ect of the number of hid-
den units. Figure 2 shows the results for the fully recurrent
and the Elman architectures, using 1 to 4 hidden units and
the non-minimum-phase channel (the results with the par-
tially recurrent network were very similar). The data clearly
indicate that the number of units does not appreciably a�ect
the performance.

3.2. Internal representation

After obtaining the results shown on �gure 2, we studied
the weight structure of trained nets, to infer the equaliz-
ation strategy learned, and checked whether the learning
algorithm was setting most of the weights to 0 so that the
RNN used a single hidden unit. Although some of them
showed the structure mentioned before, the rest of the tests
did not point so clearly in that direction. This may be
probably due to the assumption of suboptimal distributed
strategies which are roughly equivalent to a local strategy
using a single hidden unit. This deserves a more detailed
study that will be reported elsewhere.

3.3. Suboptimal strategy

The last step to study the suitability of using RNN for di-
gital equalization as compared with other approaches was to
test whether the assumption of a suboptimal strategy [2, 3]
was due to the training algorithm or to an inherent repres-
entational shortcoming of the architecture.

Since the worst results were obtained for the NMP chan-
nel, we decided to train a 2-hidden-neuron FR recurrent
neural network with its weights set to the values that allow

-4
-3.5
-3

-2.5
-2

-1.5
-1

-0.5
0

0 5 10 15 20 25 30 35 40 45 50

log(BER)

S/N ratio (dB)

Minimum Phase Channel

FR 3

333

3

3

3 Elman +

+++
+

+

+

PR 2

222
2

2

2

-4
-3.5
-3

-2.5
-2

-1.5
-1

-0.5
0

0 5 10 15 20 25 30 35 40 45 50

log(BER)

S/N ratio (dB)

Non-Minimum Phase Channel

FR 3

33
3

3

3
3

Elman +

+++
+

+
+

PR 2

2
22

2

2
2

Figure 1. Bit error rate versus signal-noise ratio

for the three di�erent architectures (FR: fully re-

current; PR: partially recurrent).

it to emulate the behavior of an analytically obtained DFE
for that channel. When noise is low, a simple DFE such as

y[t] = sgn[A(u[t]� 0:8704y[t� 1]� 0:3482y[t� 2])]

will equalize it. A possible FRNN realization of this DFE
would be:

x1[t] = tanh(4:698u[t]� 4:089x1[t]� 1:636x2[t� 2]);

x2[t] = tanh(1:636x1[t� 1]);

with y[t] = x1[t] for no decision delay and y[t] = x2[t] for a
decision delay of 1 unit. The rest of the weights would be
zero. Figure 3 shows the performance of this synthetic RNN
equalizer, which is clearly superior to any of the trained
equalizers in this paper.
It is interesting to report here that, when training starts

from this synthetic network instead of from a network with
small random weights and biases, the BER performance of
the equalizer is somewhat degraded, especially when noise is
low; this is shown in �gure 3. Additional experiments show
that degradation is worsened by the presence of the weight
decay term 
. Also, higher values of the learning rate � lead
to more degradation; this is due to the fact that the weight
update rule of the RTRL algorithm is an approximation to
true gradient descent in the limit �! 0. The results shown
correspond to 
 = 0 and � = 0:1; 0:01; 0:001.

4. CONCLUSIONS

Our work shows that:



-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0 5 10 15 20 25 30 35 40 45 50

log(BER)

S/N ratio (dB)

Fully recurrent net

1 unit 3

33

3

3

3

3 2 units +

++
+

+

+
+

3 units 2

22

2

2

2

2

4 units �

��

�

�

�

�

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0 5 10 15 20 25 30 35 40 45 50

log(BER)

S/N ratio (dB)

Elman net

1 unit 3

33
3

3

3

3 2 units +

++
+

+

+

+

3 units 2

22
2

2

2

2

4 units �

��
�

�

�

�

Figure 2. Bit error rate versus signal-noise ratio for

the fully recurrent and Elman nets as a function of

the number of hidden units

-2.5

-2

-1.5

-1

-0.5

0

0 5 10 15 20

log(BER)

S/N ratio (dB)

DFE FRNN

� = 0:1 3

3 3 3
3

3

3

3

3

� = 0:01 ++ + + +
+

+

+

+

� = 0:001 2

2 2 2
2

2

2

2

2

DFE �

� �
�

�

�

�

�

�

Figure 3. Bit error rate versus signal-noise ratio

for the FRNN emulating the optimum DFE for the

channel, before and after training.

� The BER performance of RNN equalizers trained using
RTRL on 2-ary PAM signals using the GSM training
ratio (26 train/114 data) is both independent of the par-
ticular architecture used and independent of the number
of hidden units in the RNNs.

� This is due to the assumption of a suboptimal equal-
ization strategy which is equivalent to using a single
hidden neuron; indeed, we show that the architectures
are capable of a much better BER performance when
weights are set to suitable values. The suboptimality
of results indicates that RTRL may not be the best
choice of learning algorithm for adaptive equalization
purposes.

� The RTRL learning algorithm tends to degrade the per-
formance of a synthetic RNN designed to mimic the op-
timum DFE, when it is run on real data. This is due in
part to the fact that the error gradient is approximated
but not exactly computed by the RTRL learning rule.

This suggests that one of the main lines of our future re-
search should address learning algorithms: RTRL seems to
be ine�cient for this purpose and is computationally very
expensive. We also plan to study the suboptimal solutions
reached by the network in more detail. It is also important
to note that the work reported here deals with stationary
channels, a very uncommon situation in mobile digital com-
munications.

Acknowledgments: The authors wish to acknowledge
the support of the Spanish Comisi�on Interministerial de
Ciencia y Tecnolog��a through grant TIC95-0984-C02-01.



REFERENCES

[1] Proakis, J.; Digital Communications, New York:
McGraw-Hill (1995).

[2] Bradley, M.J.; Mars, P.; \A critical assessment of recur-
rent neural networks as adaptive in digital communica-
tions", Proc. IEE Colloquium on Applications of Neural
Networks to Signal Processing, London, (1995), p. 11/1{
4.

[3] Bradley, M.J.; Mars, P.; \Application of recurrent neural
networks to communication channel equalization", Proc.
ICASSP '95, Detroit, (1995), 5: 3399{3402.

[4] Elman, J.L.; \Finding structure in time", Cognitive Sci-
ence 14 (1990) 179{211.

[5] Chen, S.; \Adaptive equalisation using neural net-
works", in Murray, A.F.(ed.), Applications of Neural
Networks, Kluwer, (1995), 241{265.

[6] Kechriotis, G.; Zervas, E.; Manolakos, E.S.; \Using Re-
current Neural Networks for Adaptive Communication
Chanel Equalization", IEEE Trans. on Neural Networks,
(1994), 5:2, 267{278.

[7] Robinson, A.J.; Fallside, F.; \A recurrent error propaga-
tion speech recognition system", Computer Speech and
Language 5, 259{274.

[8] Williams, R.J.; Zipser, R.A; \A learning algorithm for
continually training recurrent neural networks", Neural
Computation 1 (1989) 270{280.

[9] Scourias, J. \Overview of the global system for
mobile communications" http://ccnga.waterloo.ca/-

~jscouria/GSM/gsmreport.html (1995).

[10] Hertz, J., Krogh, A., Palmer, R.G.; Introduction to
the Theory of Neural Computation, Reading, Mass.:
Addison-Wesley (1991), p. 157.


