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ABSTRACT

The design of adaptive equalizers is an important topic
for practical implementation of e�cient digital communica-
tions. In this paper, the application of a radial basis func-
tion neural network (RBF) for blind channel equalization is
analysed. This architecture is well suited for equalization of
�nite impulse response (FIR) channels partly because the
network model closely matches the data model. This al-
lows a rather straightforward design of an optimal receiver,
in a Bayesian sense. It also provides a simple framework for
data classi�cation, in which more complex nonlinear distor-
tions can be accomodated with virtually no modi�cations.
A clustering algorithm for dynamic creation and combina-
tion of local units is proposed, which eliminates the need
for channel order estimation. An initialization procedure
for the output linear layer is also presented. The network
performance is illustrated with Monte Carlo simulations for
a family of random channels.

1. INTRODUCTION

The problem of intersymbol interference cancellation using
an adaptive equalizer has been studied for several years by
the signal processing community. This e�ect occurs as a re-
sult of �ltering performed by the physical channel or trans-
mitter/receiver distortions, and can signi�cantly impair the
communications signal. Many of the techniques for equal-
izer design rely on the existence of a training sequence | a
known preamble before the actual message begins | so that
the channel can be identi�ed. In one of the simplest and
most widely used approaches, the sampled received signal
is processed by a linear �lter, adapted with the Least Mean
Squares (LMS) criterion. More sophisticated techniques
include decision-feedback equalization, fractionally-spaced
sampling, maximum-likelihood sequence estimation and ef-
�cient updating algorithms such as recursive least squares.
The feasibility of applying neural networks for equaliza-

tion of simple channels using multilayer perceptrons (MLP)
was demonstrated in [1]. It showed that the best conven-
tional receivers could be outperformed in terms of error
probability and mean-square error by neural networks. It
also highlighted some typical limitations of this type of neu-
ral network, such as long training times, convergence to un-
desirable performance extrema and strong dependence of
estimation accuracy on the speci�c network topology.
The radial basis function neural network has attracted

much attention since early works such as [2], which demon-
strated that it could outperform multilayer perceptrons in
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some benchmarking problems. Moreover, its structure is
deeply rooted in multivariable approximation theory, and
allows a two-step learning algorithm that can converge to a
solution several orders of magnitude faster than the MLP.
In the speci�c application of channel equalization, there are
additional physical motivations for using this network.

2. PROBLEM FORMULATION

A standard baseband equivalent model of a communications
system is considered. A sequence of i.i.d. symbols a(n) is
transmitted through a �nite memory distortive channel and
corrupted by white Gaussian noise �(n). The channel is
assumed linear, with an impulse respose h(n) spanning Nh

symbols, and an output y(n) of the form

y(n) =

Nh�1X

k=0

h(k)a(n� k) + �(n) : (1)

The RBF network can also be used with more general
channel models such as y(n) = g (a(n); : : : ; a(n�Nh + 1)),
where g is an Nh-dimensional (mildly) nonlinear function.
In this paper a binary sequence taking values from f�1;+1g
is used, although the RBF network is also applicable with
M -ary real or complex signaling.

An equalizer estimates the current symbol a(n) by pro-
cessing an N -dimensional input vector yf(n) = [y(n �
N1) : : : y(n�N2)]

T , where N = N2�N1+1 and (�)T denotes
vector transpose. In the absence of noise, the channel out-
put can take only �nitely many values. With binary signal-
ing there are at most Ns = 2Nh+N�1 possible combinations
or channel states for the input vector yf . Conventional lin-
ear equalizers overlook this information, which should be
exploited to the bene�t of performance, as in the maximum
likelihood receiver. In the presence of noise the data points
form clusters around the channel states, and the pdf of yf
is obtained by a mixture of Gaussian density functions.

Most linear equalizers try to approximate the inverse of
h(n), so that the overall channel plus equalizer response
approaches a discrete impulse. Alternatively, equalization
may be viewed as a pattern classi�cation problem in which
the N -dimensional input space is partitioned into subsets
corresponding to each desired symbol of the input alphabet.
Using this approach, it may be shown that a minimum er-
ror probability symbol-by-symbol processor estimates a(n)
by maximizing the conditional probability Prfyf(n)ja(n)g
over the entire equiprobable source constellation [3]. For
binary signaling and real channels, the associated Bayesian
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Figure 1. RBF network structure
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denote the channel states where a(n)

equals +1 or �1, respectively, and �2 is the noise variance.

3. RADIAL BASIS FUNCTION NETWORK

The structure of a radial basis function neural network is
depicted in �gure 1. It is formed by a single hidden layer of
radially symmetric local units, which connect to an output
linear layer. The network creates a mapping of the form

f(y) =

NuX

k=1

wk � (ky� �kk=�k) ; (3)

where Nu is the number of local units, � : IR! IR is a basis
function, and wk is the weight connecting unit k to the
output. The nonlinear function � takes signi�cant values
only near the origin, and determines the shape of all local
units. It is almost invariably selected as �(y) = exp(�Ky2),
although other choices are possible. The center �k de�nes
the point in input space where unit k is centered, and the
radius �k adjusts its width.
Expression (3) has the same structure as (2), and for

Gaussian units the two can be made equal by an appropri-
ate choice of Nu, wk, �k and �k. The real RBF network
can implement the optimal decision function if a local unit
is placed at the center of each input cluster, the weight
connecting it to the output equals the desired symbol, and
all radii satisfy �k =

p
2�. This ideal solution requires an

adequate placement of units at the channel states, which
raises some problems. Firstly the number of units in an
RBF network is usually considered �xed. Since Ns depends
not only on the input dimension, but also on the channel
order Nh, the latter must be known or estimated before
the network can be used. Suitable channel order estimation
methods are proposed in [4, 5]. If Nh is signi�cantly un-
derestimated, fewer units than channel states will be used,
leading to severe performance degradation. Moreover, in
time-varying channels the number and location of data clus-
ters also changes in time. Assuming a �xed number of units
may lead to undesirable solutions.
Knowledge of the noise variance is also needed to com-

pletely de�ne the local unit response, but this is a rather
simple problem. Additionally, this parameter has a reduced

e�ect on the decision boundary f(y) = 0, and it need not
be determined very accurately.
For classi�cation purposes only the decision boundary is

relevant, and the mapping performed by the RBF will not
necessarily produce a low output mean-square error (MSE).
A more acceptable solution is to normalize the output of all
local units by a factor [2]

NuX

k=1

� (ky � �kk=�k) ;

which does not alter the decision boundary. When the cen-
ters are positioned at the channel states, the output of each
unit becomes a symbol a posteriori probability, and a min-
imum MSE or MAP processor can be obtained by an ap-
propriate selection of weights [3]. This normalization will
be used throughout the simulations.

4. LEARNING ALGORITHM

A major drawback of nonlinear equalizers based on multi-
layer perceptrons or recurrent networks is the inability to
determine the adjustable parameters in closed form even
when the channel response and noise statistics are known a
priori . This also means that convergence to local extrema
in an adaptive implementation cannot be e�ciently con-
trolled. In this respect the RBF network is superior because
the correctness of steady-state solutions can be imposed by
a proper initialization of the free parameters based on the
channel states.
The RBF learning algorithm is usually decoupled in two

steps. First, clustering is performed on the input vectors
to determine the unit centers and radii, and then the out-
put weights are adjusted. The �rst step is typically accom-
plished using an unsupervised algorithm such as K-means,
and the output weights are computed in closed form using
the desired output symbols. Due to the special structure of
the input data, modi�ed versions of this procedure can be
used in channel equalization. In [4] a simple supervised clus-
tering algorithm is used, based on knowledge of the channel
order and the transmitted symbols. The output weights are
not adapted, but rather selected according to the desired�1
coe�cients in the Bayesian decision function.
Since the transmitted symbols are not known in blind

equalization, unsupervised learning must be used in both
steps of the algorithm. In [6] an algorithm of this kind was
proposed by the authors.

4.1. Updating of Centers and Radii

In [6] the local unit parameters were trained using a stan-
dard clustering algorithm that requires a �xed number of
centers. While this algorithm is well suited for quantization
of data uniformly distributed in a compact domain, it may
lead to local minima which incorrectly identify the channel
states when the input vectors form discrete clusters. It is
also subject to the problems that other RBF equalization
approaches face when the number of centers must be esti-
mated beforehand. To overcome these limitations, a simple
dynamic clustering algorithm is proposed in this paper, re-
quiring only an estimate of the noise power. When a data
point is \far" from all current centers, it is assumed that
it belongs to an unidenti�ed cluster, and a new unit is cre-
ated at that location. When two centers are \close", they
are regarded as belonging to the same physical cluster and
subsequently combined. The de�nition of \far" and \close"
depends on the spreading of clusters, which is a function of



the noise power only. A data point is considered far from
its channel state if the squared Euclidean distance is larger
than dmax, de�ned as

Prfkyf (n)� yfik2 > dmaxg < � ; (4)

where � is typically smaller than 10�4. The critical distance
dmax is readily computable from (4) since kyf (n)�yfik2=�2
has a chi-square distribution with N degrees of freedom1. A
critical distance dmin for combining centers is de�ned sim-
ilarly by Prfkyf (n) � yfik2 � dming < �. The clustering
algorithm may be summarized as follows:

Nu = 1
n1 = 1 , �1(n1) = yf (0)

for n = 1:Ny

di = kyf (n)� �ik2; 1 � i � Nu

k = argmini di

if dk > dmax

Nu = Nu + 1
nNu = 1 , �Nu

(nNu) = yf(n)

else

nk = nk + 1

�k(nk) =
�(1��nk�1)�

k
(nk�1)+(1��)yf (n)
1��nk

end

di;j = k�i � �jk2; 1 � i; j � Nu

k; l = argmini;j; i6=j di;j

if dk;l < dmin

nkl = nk + nl

�kl =
nk�k(nk)+nl�l(nl)

nkl

nk = nkl , �k(nk) = �kl

Nu = Nu � 1
clear nl, �l and recompute indices

end
end

Each �k is updated with an exponentially weighted time
average, which allows the centers to track channel variations
and reduces the impact of undesirable center creations. The
recursive expression for �k avoids the use of a gradient-type
approximation that would require the selection of a suitable
step size.
When a data block is processed, several spurious cen-

ter creations and combinations may occur, but at least one
center remains associated with each cluster (or group of
partially overlapping clusters.) This ensures that the sup-
port set for the RBF mapping is properly de�ned, and the
normalization of local unit outputs keeps the MSE at low
levels. As in [4], it was found that the value of �k has little
e�ect on the decision boundary, and a particularly simple
choice is �k =

p
2� for real signals or �k = � in the complex

case.

4.2. Initialization and Weight Update

According to (2), if the channel states were known the
weights wk would be �xed at �1. In a practical system,
however, adapting the weights during data transmission
is advisable, and a suitable blind equalization algorithm

1For complex signals kyf (n)� yfik
2=(�2=2) � �2

2N
.

matches selected output and source moments by adaptively
minimizing the cost function [6]

d(n) =

4X

l=1

�l
�
hzlin �E

�
a
l
	�2

(5)

hzlin =
�0(1� �n�10 )hzlin�1 + (1 � �0)z

l(n)

1� �n0
: (6)

In (6), z(n) = f(yf(n)) denotes the equalizer output, and
hzlin is a time average that estimates its moment of order l.
The weighting constants �1; : : : ; �4 help de�ne a generalized
error signal.
This criterion can only compensate relatively small devia-

tions of the weights from their optimal values, and a proper
initialization procedure is crucial to ensure a valid steady-
state RBF output. For binary signaling this is accomplished
by partitioning the centers in two sets with opposite out-
put desired symbols. All the weights wk whose �k belongs
to a given set are arbitrarily initialized with �1, and the
remaining ones with +1. This may cause a sign reversal
at the equalizer output, that can be easily corrected with
di�erential encoding. To ensure that the selected partition
could produce a valid set of channel states fy+fig, fy

�
fjg, we

�rst remark that for an invertible, linear, noiseless channel
and a high enough input dimension N , there exists a vector
v such that vTyf(n) � a(n� d) = �1. Geometrically, this
means that the data points yf(n) are approximately located
in two parallel planes orthogonal to the complex conjugate
of v, and the same must be true for the centers �k. The
following cost function penalizes deviations from the pla-
nar model, and may be minimized iteratively by gradient
descent

J =

NuX

k=1

�
jvT�kj

2 � 1
�2

: (7)

The requirement of linear separability of channel states (and
centers) having di�erent desired output symbols is rather
restrictive, and may induce an unnecessarily high input di-
mension N . However, the lack of a priori knowledge about
the shape of all possible decision boundaries forces us to
make this assumption. It should also be pointed out that
this separation does not signi�cantly a�ect the convergence
rate of the RBF equalizer because it occurs in parallel with
the clustering process, and usually converges to a valid so-
lution before enough centers have been reliably identi�ed,
so that the weight adaptation phase can be initiated.

5. RESULTS AND DISCUSSION

To better characterize the behaviour of this network under
di�erent conditions, a family of random multipath channels
typical of an outdoor mobile communications environment
in the GHz range was considered. Figure 2 depicts the
normalized power delay pro�le, where �xed delays are as-
sumed and the attenuations follow a Ricean fading model.
Only the main path has a deterministic component, which
accounts for 60% of its average power. The transmitted sig-
nal is formed by a binary sequence that modulates a train of
raised cosine pulses with 100% rollo�. The received pulses
may have very di�erent shapes; in about 5% of all simu-
lated channels very severe fading is observed, and virtually
no signal energy is received. These extreme cases are clearly
untractable, and were discarded.
The average received pulse has an e�ective duration of

about �ve symbol intervals. Processing of longer responses
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would require a higher input dimension N , which would in
turn cause an exponential increase in the number of required
local units. For this reason, practical RBF equalization is
restricted to small signal alphabets and channels where the
interference extends over four or �ve symbol intervals [3].
Figure 3(a) shows the average MSE as a function of mean

signal to noise ratio2 for N = 2 and 4. In each Monte Carlo
run the channel is kept �xed, and a block of 5000 symbols
is processed. Before decoding begins, 500 input vectors are
processed to obtain estimates of the centers and the separat-
ing hyperplane. After this period the weights are initialized
close to their steady-state values, and little transient be-
haviour is subsequently observed at the equalizer output.
The clustering/separation algorithm is not stopped, so that
channel variations can be tracked. If a center crosses the
separating hyperplane during message decoding, it is con-
sidered that the new con�guration is more reliable, and its
associated weight is reinitialized. If clusters with di�er-
ent output symbols are indeed linearly separable and do
not overlap, the RBF equalizer achieves a very low MSE
of about �40 dB. As the noise power increases, the latter
assumption will eventually be violated, and the error prob-
ability increases rapidly. Figure 3(b) shows the fraction of
channels in the test set that were successfully equalized for
di�erent values of �2.
Figure 3 shows an improvement in overall performance

when N is increased from 2 to 4, which may be attributed
to a greater separation of clusters. However, the �rst learn-
ing stage becomes slower because more clusters have to be
identi�ed, and the hyperplane adaptation step has to be re-
duced by one order of magnitude. With N = 4 the centers
are correctly separated in no more than 1500 iterations for
most channels.
To test the e�ect of channel variations within a data

block, the multipath attenuations were gradually changed

2The mean signal to noise ratio is de�ned as EfEbg=�
2, where

Eb is the average received energy per symbol interval in a speci�c
channel realization.
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Figure 4. Time-varying random channel, N = 2 (a)
Average MSE (b) Fraction of equalized channels

every 100 symbols. To simulate a relatively slow drifting
e�ect, zero mean lowpass noise was added to the gains in
each channel considered previously. The disturbance in
a given path is uncorrelated with all the remaining ones,
and its power is 20 dB lower than the squared magnitude
of the original gain. Using this model, the cluster signa-
ture of individual channels remains recognizable during the
entire data block. Figure 4 shows the average MSE and
the fraction of equalized channels under these conditions
for N = 2. As expected, some performance degradation
is observed when compared with �gure 3. This e�ect is
due not only to the more frequent overlapping of clusters,
but mainly because the cluster drift occasionally causes one
of the centers to cross the separating hyperplane, and its
weight is then reset. It should be noted that these distor-
tions are not directly related to the clustering process itself,
whose tracking performance is quite good when a forgetting
factor � = 0:5 is used.
The simulations show that the RBF blind equalizer can

be successfully applied in a variety of channels. The dy-
namic nature of the clustering process allows an adequate
support for the mapping to be de�ned without prior knowl-
edge of the number of clusters, even in time-varying chan-
nels. The major restriction is the requirement of linear sepa-
rability of channel states, which is due to the non-convexity
of the cost function used for weight adaptation.
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