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ABSTRACT

In this paper we propose a new learning algorithm for
locally recurrent neural networks, called Truncated
Recursive Back Propagation which can be easily
implemented on-line with good performance. Moreover it
generalises the algorithm proposed by Waibel et al. for
TDNN, and includes the Back and Tsoi algorithm as well
as BPS and standard on-line Back Propagation as particular
cases. The proposed algorithm has a memory and
computational complexity that can be adjusted by a careful
choice of two parameters h and h' and so it is more flexible
than a previous algorithm by us.
Although for the sake of brevity we present the new
algorithm only for IIR-MLP networks, it can be applied
also to any locally recurrent neural network.
Some computer simulations of dynamical system
identification tests, reported in literature, are also presented
to assess the performance of the proposed algorithm
applied to the IIR-MLP.

1.  INTRODUCTION

An increasing number of applications of dynamic recurrent
neural networks has been developed for Digital Signal
Processing (DSP) [1,2].
Recurrent neural networks can provide better modeling
accuracy compared to buffered static Multi Layer
Perceptron (MLP) or MLP with Finite Impulse Response
(FIR) filter synapses [3], often known as Time Delay
Neural Network (TDNN) [4] even if these networks are
also used for simplicity. Feedbacks are necessary when a
long and complex temporal dynamics is required. Fully
recurrent networks are general but difficult to train [5].
Especially for DSP problems, for which, in the case of
stability, a forgetting behaviour [6] is usually required, the
MLP with Infinite Impulse Response filter synapses (IIR-
MLP) [3,5] can exibit better capabilities, due to the
prewired forgetting behaviour (typical of locally recurrent
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networks). In fact IIR-MLP can be considered as a non-
linear extension of the linear adaptive IIR filter.
Similar architectures called Local Feedback Multi-Layered
Networks (LF-MLN) were proposed by P. Frasconi, M.
Gori and G. Soda [6] for speech recognition, and a specific
learning algorithm (Back Propagation for Sequences or
BPS) was derived.
As far as the learning is concerned, in [7] a general
algorithm to adapt dynamic neural networks has been
introduced. This algorithm, called Back-Propagation-
Through-Time (BPTT), extends the classical
backpropagation for memoryless networks to non-linear
systems with memory. It is known that the BPTT is a non-
causal algorithm [7], therefore it works only in batch
mode, after the whole signal has been processed and
stored, and requires a large amount of memory. Hence in
many real problems the BPTT cannot be used to adapt the
network, but on-line learning algorithms are needed.
In order to develop on-line algorithms there are two
classical choices: approximating BPTT [8] or using the
computationally very expensive Real Time Recurrent
Learning (RTRL) [9].
In this paper we propose a new learning algorithm, called
Truncated Recursive Back Propagation (TRBP) which can
be easily implemented on-line with good performance.
Moreover it generalises the algorithm proposed by Waibel
et al. in [4] for TDNN, and includes the Back and Tsoi
algorithm [3] as well as BPS [6] and standard on-line Back
Propagation as particular cases. The proposed algorithm
has a memory and computational complexity that can be
adjusted by a careful choice of two parameters h and h' and
so it is more flexible than the algorithm presented in
[10,11] with similar performance.
Although for the sake of brevity we present the new
algorithm only for IIR-MLP networks, it can be applied
also to any locally recurrent neural network [5].
Some computer simulations of dynamical system
identification tests, reported in literature [12], will also be
presented to assess the performance of the proposed
algorithm applied to the IIR-MLP.



2.  THE BATCH MODE ALGORITHM (RBP) AND
ITS ON-LINE VERSION (TRBP)

The Recursive Back-Propagation (RBP) batch mode
learning algorithm is described by the following
expressions with the same notation introduced in [10] (an
extension of Widrow's one) and here summarised:
Nl is the number of neurons in layer l, M is the number of

layers, T is the duration of the learning epoch, yqn(l) is the
output of the IIR synaptic filter of the neuron q in layer l
and input n, xn(l) is the output of the neuron n in layer l,

sn(l) the related net, Lnm(l) -1 the order of the Moving
Average (MA) part of the corresponding IIR synaptic filter,
Inm(l) the analogous for the Auto Regressive (AR) part,
dn[t] is the n-th desired output signal, µ is the learning rate,
E(t0,t1) the squared error in the time range [t0,t1],

en
(l) [t] = − 1

2
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 is the backpropagating error,
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(l) [t] = − 1
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 is the usual delta, weightnm(p)(l)

indicates either a numerator ('w ') or denominator ('v')
coefficient of the IIR filter rational function of neuron n,
input m , layer l and delay p , sgm(.) is the activation
function.
The forward phase at time t can be described by the
following three equations evaluated for l=1,...,M  and
n=1,...,Nl:
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The weights variations are computed, by chain rule, as:
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for the weights of the MA part, and
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for the weights of the AR part.
Under the hypothesis of IIR synaptic filter causality, it
holds true, by chain rule:
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for layer l=M ,...,1 and neuron n=1,...,Nl. Note that

expressions (6) (7) and (9) are known in the linear adaptive
IIR filter theory [13], the only difference is that some
indexes are present to specify the synapsis in the network
where the IIR filter is.
It is easy to see that this RBP algorithm, as BPTT, is not
causal, in fact en

(l)  at time t  depends on δq
(l+1)  at future time

instants. The weights update can only be performed in
batch mode, i.e. accumulating the weight variations at each
time instant and using the exact formulas. However in
many applications of non-linear signal processing, an on-
line learning algorithm is necessary. Therefore we want to
derive a new method to approximate this batch mode
algorithm whose inspiration comes from the algorithm
proposed by Williams and Peng for fully recurrent neural
networks [8].
Must be stressed that the RBP algorithm is not a version of
BPTT [7,8] nor one of RTRL [9] even if in the first papers
[10,11] we used the name BPTT. However, for the first
time, it implements some features of both algorithms: the
backward error propagation of BPTT is used in expressions
(3), (5) and (8); the recursive forward derivatives
calculation commonly used in the RTRL and output-error
approach (Recursive Prediction Error or RPE) [13] is
implemented in formulas (6) and (7); expressions (4) and
(9) have no direct link to BPTT nor to RTRL. This means
that the new RBP algorithm applied to the IIR-MLP
implements the output-error RPE approach for the IIR
filters adaptation and the BPTT error backpropagation to
exploit the neural layered structure; the resulting method
allows an accurate and efficient on-line gradient
computation in locally recurrent neural networks.
First the RBP algorithm must be causalized. This is
provided by choosing the squared error computed at the
current time instant (τ in the following) and not over all the
sequence, so that the gradient descent can be expressed by:
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(l) = − µ
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(l)
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τ
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Causalization can be obtained simply substituting the final
instant T  of the sequence with the current instant τ  in (3)
and in (8). In this way the upper index of the inner
summation in (8) is the current time minus the index t of



the summation in (10). So every time step, expression (8)
is evaluated for t=1 to τ  using δq

( l +1)[. ]  up to time τ  for

each time instant, so that the calculation is causal.
Since this implementation would require a memory and
computational complexity for each iteration that grows
with time, a forgetting mechanism must be implemented
for on-line training. Forgetting the old past history is very
reasonable and recommended by many authors, e.g. [8].
The obtained performance are competitive [8] even with
the RTRL algorithm that computes a slightly approximated
gradient of the instantaneous error [9]. The only expression
that must be changed is (10) that becomes:

∆weightnm(p)
(l) = ∆weightnm(p)

(l)

t=τ−h+1

τ

∑ [t + 1] (11)

where h is the length of the considered history buffer .
Now the algorithm can be implemented on-line with
parameters changes computed by (11), performed every
time step. It can be shown that since we are considering
instantaneus error cost function, the error injection [8]
should be performed only for the current time step so that
in this case, for the last layer, en

(l) [t] is zero for t<τ; this
simplifyies the calculation of expression (11) for the last
layer since the corresponding delta is also zero and so only
one term remains in (11) when l=M. For the same reason,
expression (8) can be easily computed for l=M-1 since
again only one term remains in the inner summation.
To simplify the algorithm a modification can be
implemented: updating the coefficients every h' instants
instead of every instant. This reduces the computational
complexity basically by a factor of h '; if h-h ' is large
enough (h>=h ' always) the approximation gives good
performance [8]. However when applications that require
adaptation every time instant are involved, (e.g. on-line
tracking of fast varying systems), h' can be chosen equal to
one, of course.
For the general method with h'>1, the error injection must
be performed for the time indexes t from τ-h'+1 to τ so that
more terms are present in the summations in (8) and (11)
and not only one as previously explained. This correspond
to compute the gradient of E(τ-h'+1,τ).
Even when h '=1, if a cost function smoother than the
instantaneous error is desired such as E(τ-Nc+1,τ)  (with
Nc appropriately chosen and constrained to be Nc≥h'), the
error injection can be performed for all t ∈[τ − Nc + 1, τ].
In this paper we are assuming Nc=1, but the extension is
trivial.
We will call the algorithm defined in this way Truncated
Recursive Back Propagation (TRBP). From now on the
algorithm in [10,11] will be called Causal RBP (CRBP).
To improve the accuracy, when IIR-MLP or locally
recurrent layered networks are considered, it can be useful
to make h depending on the layer l in (11) and chooses it
approximately equal to one plus the summation of the
maximum memory of the synaptic filters (roughly
estimated) from layer l+1 to the last one, i.e.:

hl =

h'       if l = M

1 + Qi
i = l +1

M

∑      if 1 ≤ l < M
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where Qi is an estimate of the maximum memory for the
filters in layer i. This choice is reasonable since the
truncation of (10) depends on the value δn

(l) [t] varying t
that in turn depends on the memory of the synaptic filters
of layers from l+1 to M.
It is possible to give a formal condition under which the
truncation of (10) is feasible:
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δn
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h→∞
− 1

2
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h→∞

∂xk
(M) [τ]

∂sn
(l) [τ − h]

= 0  for each k, n, τ.

This condition is satisfied for IIR-MLP if all the IIR filters
of an arbitrary chosen layer from the l+1-th to the last one
are stable or more in general for locally recurrent
multilayered neworks if all the neurons in an arbitrary layer
after the l-th exhibit forgetting behaviour [6] (the proof can
be given by the chain rule). This condition is different from
that which allows the truncation needed by CRBP (in
formula (8) ) since in that case the stability of the filters of
all layers after the first was needed. Moreover only for the
sake of truncation of (10), the previous condition can be
relaxed to the following: at least one branch in every path
from one arbitrary neuron of layer l-th to a neuron of the
last layer must be a stable IIR filter. Anyway for the
overall TRBP algorithm all the synaptic IIR filters in the
network are required to be stable, but the previous analysis
seem to indicate a less sensibility to truncation for TRBP
than for CRBP if M>2.
A difference with the approximation proposed in [10,11] is
that more terms than the current time coefficient variations
are computed and accumulated for each iteration,
potentially with a better approximation of the true gradient.
The new method is simpler than the previous one if h/h' is
chosen reasonably close to one (with the limitation that h-
h' should be large enough for accuracy). A good choice can
be h=2h' with h' large enough.
It is interesting to note that TRBP with the previous choice
for hl using Qi equal to the maximum FIR filter order of
layer i-th and h'=1 gives as particular case the algorithm
proposed by Waibel et al. in [4] for MLP with FIR
synapses (or TDNN). It has a nice geometric interpretation
since it is obtained applying static BP to the network
unfolded in time replicating network substructure for each
delay. The resulting network has no internal memory but
the inputs are the original ones and their delayed versions.
Our formulation is much more general since it allows
feedbacks in the network.
Moreover TRBP with h=h'=1 gives the Back and Tsoi
algorithm [3] for IIR-MLP. Of course, if all the synaptic
filters have no memory (the IIR-MLP becomes a standard
MLP) and h'=1 TRBP particularises to standard on-line BP



(hl=1 for each l according to (12) ). Even BPS for LF-
MLN [6] is a particular case of TRBP.

3.  SIMULATIONS

To asses the performance of the new learning algorithm
and compare it to the previous ones we chose two difficult
non-linear dynamic systems identification tests from
literature [12], for which IIR-MLP or locally recurrent
neural networks give better modelling results than buffered
MLP, FIR-MLP and fully recurrent neural networks.
The first system is a first-order single-input single-output
system described by state variable and with non-linearity
and memory which are non-separable. The second system
is a second-order single-input two outputs system again
with non-linearity and memory which are not separable.
For the system identification a 1000 samples uniform
random noise sequence in the range [-1.25,1.25] was used.
The simulations reported refer to a IIR-MLP network with
3 sigmoidal neurons in the hidden layer and 1 or 2 linear
output neurons respectively for the first and second system.
For the first system the IIR-MLP used has MA order equal
to 4 and AR order equal to 2 whereas for the second
system the orders are respectively 3 and 1. The learning
rate is 0.01.
Results for TRBP with h=4, h'=1, CRBP with Q2=2 and
Back-Tsoi algorithm for training an IIR-MLP are reported
in Figure 1 for the first system and Figure 2 for the second
one, in terms of Mean Square Error (MSE) during training.
The simulations show the good performance of the
proposed learning algorithm.
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           Figure 1. First system identification test results Figure 2. Second system identification test results


