
A ROUNDOFF ERROR ANALYSIS OF THE OJA'S SUBSPACE RULE
1

Tamás Szabó and Gábor Horváth

Technical University of Budapest
Department of Measurement and Instrument Engineering

Email: szabo@mmt.bme.hu, horvath@mmt.bme.hu

ABSTRACT [1]. The PCA neural networks can determine both the

transformation vectors - the eigenvectors - and the KLT of the

signal/data to be analyzed in real-time if the networks are

implemented in parallel hardware.

This paper deals with the effects of finite precision data

representation and arithmetics in principal component analysis

(PCA) networks. PCA or Karhunen Loéve Transform (KLT) is

a statistical method that determines an optimal linear

transformation of input vectors of a stationary stochastic

process. The PCA networks are single layer linear neural

networks that use some versions of Oja's learning rule. The

paper concentrates on the errors which will arise during

learning if fixed point data representation and arithmetics are

used. It gives analytical results based on the additive noise

model of quantization. In the analysis all three components of

the finite precision effects are considered: (i) the error due to

the input data quantization, (ii) the error caused be finite

precision representation of the weights of the network, and (iii)

the effects of the finite precision arithmetics. The results can

be used directly to determine the required word-lengths for

special hardware implementation of the neural net.

Neural nets can be implemented on analog or digital hardware.

In analog realizations it is quite easy to implement multipliers

and adders, but the modification of the weight values, the on-

line learning is rather hard to implement. Further, there may be

problems with the accuracy and long-term stability of the

weights. In digital realizations not the stability and the

realization of the on-line learning, but the efficient

implementation of the high-speed multipliers makes most of

the difficulties. Because of technological limitations for fast

and efficient parallel realizations fixed point data

representations and computation have to be used.

Unfortunately, in this case the questions must be answered:

how much precision is required to represent data and weights,

and how precise arithmetics must be used? We address these

questions in this paper.

1. INTRODUCTION

The first neural network to solve the principal component

problem was proposed by Oja in 1982. Since that time a whole

family of PCA networks was developed (e. g. [3] and [4]),

which use very similar learning algorithms. All of them are

single-layer linear neural nets with fixed number of neurons

using unsupervised learning, and all of them can be regarded

as some extensions of the Oja's single-neuron network which

determines only the first principal component. In this paper we

will deal only with the single-output Oja's network. However,

because of the common root of all these networks the results of

this analysis can be easily applied to the other networks of the

whole family.

In measurement systems there is a frequent need to represent

signals or multidimensional measurement data in an efficient

way. In these cases the goal is to transform the original

multidimensional data onto a much fewer dimensional space

without any error or with as few information losses as possible.

Principal Component Analysis or Karhunen Loéve

Transformation (KLT) is an optimal linear way of this

transformation. KLT projects the N-dimensional input data

onto an M-dimensional subspace, where usually M<<N, in

such a way that the mean square error of the approximation is

minimal. The dimension reduction is reached by transforming

the correlated input data into statistically independent or at

least uncorrelated components. The difficulty of this

transformation is that the transformation matrix depends on the

data to be transformed. The transformation matrix is formed

from the eigenvectors of the autocorrelation matrix of the

multidimensional data, so the classical way of KLT is a rather

computation-intensive process. This high computational

burden is the main obstacle of using KLT in real-time

embedded measuring systems. Recently some linear neural

architectures - the PCA networks - and some unsupervised

learning rules were proposed for solving the KLT problem

without the previous computation of the autocorrelation matrix

[1]-[3]. These learning rules are based on Oja's subspace rule

The Oja's network is a simple linear combiner where the

output is the dot product of the input data vector (x), and a

proper weight vector (w): y
T= w x . The required transform

can be achieved if the first eigenvector of the autocorrelation

matrix of the input process is used as the weight vector of the

network. This vector is formed as a result of a convergent

learning process, where the learning algorithm is a normalized

version of the Hebbian learning rule:

w w x w() () () ()[() () ()]k 1 k k y k k k y k+ = + −µ (1)

Here x(k) is the k-th sample of the N-dimensional input data

sequence that has been centered to zero mean, w()k is the

weight vector at the k-th learning step, y k() is the correspond-

ing output and µ()k is the learning rate.

Although this learning rule is a little-bit more complicated than

the LMS rule, we can find some similarities between the two

algorithms. This similarity can be found not only in the

1This work was supported by the Hungarian Fund for

Scientific Research (OTKA) under contract T 021003.

algorithms but in the error analysis. So in our analysis we can

follow the basis steps used in [7]. Unfortunately the

consequence of the higher complexity of the Oja's rule is that

the analytical expressions for the PCA networks will be more

complex, which can be compensated only with the neglecting

of the less important terms as you will see later.

variance σ
d

B
d2 2

2 12=
−

/ , and the quantization error associated

with a B
c
+1-bit number has variance σ

c

B
c

2 2
2 12= −

/ .

A6. that during additions no overflow occurs, hence,

additions do not introduce any errors,

A7. the only errors due to the finite precision arithmetics

are associated with the multiplications. At the calculation of

the inner products errors will arise after the product is

quantized. Furthermore, the inner product can be computed in

two different ways: if all partial multiplications of an a b
T

 are

computed without quantization and only the final result after

summation of the partial products are quantized in B
d
 bits,

then the variance of the additive noise is σ
d

2

, but if all the N

scalar products in a b
T

 are quantized individually before

summation, the variance of the quantization error is N
d

σ 2

. (N

is the dimension number of the vectors).

2. THE ROUNDOFF ERROR MODEL

In this section we take into account the sources of the errors

caused by finite precision computation, their effects to the

algorithm and show the approach which is used in the error

analysis.

Three different sources of errors caused by fixed point

computation can be distinguished . These are the followings:

• the error due to quantization of the input signals,

• the effects due to the quantization of the weights of the

 neural network,
Applying the statistical model of quantization we can rewrite

the basic equations of the Oja's network:
• the error at the output of the network due to the applica-

tion of finite precision arithmetics (this means re-quantizations

after additions, multiplications, etc.) The output of the network will be:

$ () [() ()]y k k k
q

T

q q
= w x (2)

In analyzing the effects of finite word-length data

representation and arithmetics the most promising way is to

use the additive noise model of quantization. It is a statistical

approach where the main points are as follows [5]:

where

x x e
q x
k k k() () ()= + (3)

The effect of quantization is modeled by an additive noise, so a

quantized signal can be represented as the sum of the original

signal and a quantization error (noise), e(k), where e(k)

is the quantized input vector and ()e
x

k is the corresponding

zero mean quantization noise with variance σ
d

2

. Similarly the

actual weight vector at time k can be written as• is a stationary uniformly distributed white noise process;

$ () () ()w wk k k= + ρρ , (4)
• is independent of the signal.

If q is the quantization step, then e(k) is a zero mean process

with σ 2=q2 /12 variance. Although this simple model is true

exactly only if rather strong conditions are met [5], in many

practical cases - especially when the data to be quantized are

Gaussian - this statistical model is true with high accuracy.

where ()ρρ k is the noise caused by the finite precision

arithmetics and the finite word-length representation of the

weight vector.

If we neglect the higher order error terms, (2) can be rewritten

as:In the sequel we assume that:

$ () () () () () () () ()y k k k k k k k k
T T T

x
= + + +w x x w eρρ η . (5)A1. the input signal of the PCA network is a multi-

dimensional (quasi-)stationary Gaussian process with zero

mean, where the components of the multidimensional signal

are strongly correlated,

Here η ()k is the error of the fixed point arithmetics. It is

white noise and independent of the signals and the rest of the

error sequences. It has zero mean and σ
d

2

, or N
d

σ 2

 variance

according to the computation of the inner product (A7).
A2. the input sequences have been properly scaled, so

that their values lie in [-1;1],
We are interested in the total mean square output error that is

the mean square value of last three terms at the right side of

(5):

A3. at a given iteration step the weight vector w(k) and

the input vector x(k) are uncorrelated; some correlation can be

found only between the weight vector, w(k) and the previous

input data vectors x(k-1), x(k-2), etc. { } { } { }ξ
arit

T T

x
E k k E k k E k= + +ρρ () () () () ()x w e

2 2
2

η (6)
A4. we are in a point of the iterative process where the

algorithm has almost already converged, i. e. we are close

enough to the final steady state. In this case during the further

training steps the weight vector does not change significantly,

so it can be considered as a constant rather than a probability

variable. Moreover, { }E
T

ww is one of the diads of the input

covariance matrix R.

Since e
x
k() and η ()k are independent of each other and are

uncorrelated to the input signal x()k and since they are white

noises with zero means, further using (A3), the error term in

(6) has zero mean for all k, which implies that the presence of

the quantization error does not affect the learning characteristic

of the algorithm.

The second term of (6) can be easily derived as:We use B
d
+1-bit numbers for the input and output data

representation, B
c
+1-bit numbers for the weight values and the

same representation is used for all the partial results of the

learning algorithm. Further we assume that:

{ } { }E k k E k k
T

x

T

d d
w e w w() () () ()

2
2 2= =σ σ (7)

To derive the first term of (6) in steady state, we follow the

approach of [8] and [7]. This term can be written as:
A5. rounding is used in the quantization, thus the

quantization error associated with a B
d
+1-bit number has { } { }E k k tr E k k

T T Tρρ ρρ ρρ() () () ()x R

2

= 



 (8)

where { }R x x= E k k
T

() () . Thus, we have to determine

{ }E k k
Tρρ ρρ() () .

complex. They have terms multiplied by different power of µ .

In practical cases the learning factor (µ) is small enough

(µ <<1). Moreover, this factor have to be set small enough to

enable to converge the algorithm well, because the amplitude

of the fluctuation of the weight vector around the ideal one in

steady state is proportional to the value of the learning factor.

Now we deal with only the case of constant learning factor.

This is why the terms proportional by the 2nd power of µ can

be neglected.

Similarly we can rewrite (1) as:

{ }[]$ () $ () $() () [$() $ ()]w w x wk 1 k y k k y k k
q q

q

+ = + −µ (9)

This requantization signal-flow can be followed in Fig. 1.

∗∗

∗∗
z

-1

-

∗∗

(k+1)w

(k)w

(k)x (k)y

(k)e (k)η

(k)ϑ ϑ
1

µ++

∗∗
(k)ϑ ϑ
2

++

x

^

^

^

Using the assumption that we are close to the steady state (A4)

Rw w= λ , where λ is the corresponding (maximal) eigen-

value. Denoting { }E
T

ww S= and using that the vector

ρρ ()k +1 and w()k 1+ depends only on data up to time k and it

does not depend on x()k 1+ , (A3) we can get:

() () (){ }
{ }

P P P R RS R SR P()k

E
T

+ = − + − + − +

+

1 1 2 2 2

2

λ µ µ

ϑϑ ϑϑ
2

(15)

Fig. 1 The multiquantizer chain model of the PCA network In this case Q has a very simple form: the only quantization

effect is the last one in the multiquantizer chain.
3. ANALYSIS OF THE ERROR MODEL

Now the matrix equation (15) can be rewritten as:

{ } { }P P PG GP()k 1 E
T+ = + + +µ ϑϑ ϑϑ

2 2
(16)In the sequel we will not show the time indexes unless it

disturbs understanding. Evolving the right side of (9) we get:
where G R S I= − −2λ λ . In steady state from (16) we can get

the matrix equation [6]:{ }
()(){ }

w w w e x

x e w e x w

() () *k 1 k 1 y

y

T

x

T

x

T

x

T

+ + + = + + + + +

+ − + + + + − +

ρρ ρρ ρρ

ρρ ρρ ϑϑ ϑϑ

µ η

η
1 2

(10)
PG GP

Q+ = −
µ

(17)

This equation can be solved if G has non zero eigenvalues only

which is satisfied in this case, because of R is positive definite

and S is its diad corresponding to its highest eigenvalue.

where ϑϑ ϑϑ
1 2
 and are the errors of arithmetics, similar to

η ()k . They are independent of the data and the other errors

and each other further they have zero mean. For simplicity, we

take into account the effects of the two successive

multiplication (by µ and y) in one step by ϑϑ
2
. Of course, its

value depends on the way the scalar products are computed

(see A7). µ is often a power of 2, which implies that the

elements of the previous scalar product are shifted to the right

(µ <1) and requantized to B
c
+1 bits. In this case, ϑϑ

2
 is a

white noise vector whose components have zero means and σ
c

2

variances. By using (10) we will look for ρρ ()k +1 in form of

The solution of this matrix equation is:

(
~
)P

H H
W QW

ij

i j

T=
−

+

1

µ ()

(18)

where (
~

)P
ij

is the ijth element of P in steady state, W is a

matrix composed of the orthonormal eigenvectors of R and

H WGW= = −T diag , 2λ λ − λ, λ − λ,... λ − λ,2 3 Ν . (19)

In this case Q is also diagonal W QW Q
T = . The equations (8),

(18) and (19) yield the final result:

{ } ()E k k tr
T

l kk

N

l

N

lk kl
ρρ () ()

~

()
x PR

H H
Q R

2

11

1= = −
+==

∑∑ µ
(20)

()ρρ ρρk k k k+ = +1 F b() () () (11)

where

()F I x x x ww x w x x w I= + − −µ T T T T T

2 (12)
Hence, the output mean square arithmetic error is equal to:

and

ξ σ σ
arit d

l kk

N

l

N

lk c kl
c= + +

−

+==

∗∑∑()

()

1
2

11

21

µ
δ

H H

R (21)()b e e wx w e ww x= + − − − + +µ η ηy y y y
x x

T

x

T
2 2

1 2
ϑϑ ϑϑ (13)

At this point for the simplicity, we assume that the algorithm

starts with w 0()0 = and, of course, ρρ ()0 = 0 . By denoting

{ }E
Tρρ ρρ by P and { }E

T
bb by Q , we get

where c is a constant (c=1 or c=N) depending on the way the

vector product was computed (A7), δ
lk

 is the Kronecker-delta

and σσ
c

∗2 depends on the way the last two products were

computed.{ }P F P F Q() () () () ()k 1 E k k k k
T+ = + (14)

4. SIMULATION RESULTSwith initial condition P 0()0 = .

Next we need to determine the steady state value of Eq. (14).

We assume that it converges because the algorithm also

converges. To do this we have to compute the two expectation

values { }E
T

F PF and Q . Both expressions are pretty

The main point of our analysis is the computation of the

{ } { }() E k k tr E k k
T Tρρ ρρ ρρ() () () ()x R

2

= component of (6). This

component is directly determined by the steady state value of P

that is %P . This is why we examine only this matrix in the

following simulations.

10 11 12 13 14 15 16
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

µ=0.005

µ=0.05

In the simulation experiments four- and sixteen-dimensional

uncorrelated Gaussian signal sequences were generated as test

signals. From these signals we formed such multidimensional

correlated signals, that the first three eigenvalues of their

correlation matrix be significantly larger than all the other

ones; their ratios of the eigenvalues (λ λ
i
/

min
) were about 10,

5, 3, 1,1 for i=1, 2, 3 ...etc. The basis (the eigenvectors of

the correlation matrix) was a randomly chosen orthogonal

system. We made some trial runs for different µ and different

word-length representations of the data and the weight vector.

Of course, the speed of the convergence and the weight vector

fluctuation around the optimal value in steady case depend on

the value of µ . If µ is large then the convergence is fast, but

the variance is also large. Depending on the value of µ there

is an other effect of quantization: if µ is too small compared

to the quantum size q
c
 , then the algorithm can stop before it

converges completely; if some partial results in Eq. (1) are less

in magnitude than q
c
, then their quantized values are zero and

the corresponding weight does not change. The error caused by

this effect can be larger than the effect of the quantization

noise, but we do not deal with this question here. Instead such

word-lengths and µ were selected that this effect does not

arise. The number of learning steps (m) was determined in

such a way, that at a given µ it ensures to converge

sufficiently if no quantization is applied (about 5-15000 steps

according to µ). Computation without quantization means

MATLAB-precision arithmetics. About ten times longer input

sample sequence was pregenerated than it was required for the

infinite precision algorithm to converge. We trained the fixed

point network with m-length sequences randomly chosen from

pregenerated samples. This learning procedure was repeated

100-times with the same initial conditions. After all trials the

error of the weights in the last step was determined

by ρρ () $ () ()m m m= −w w . This error was the difference between

the weights of the finite- and "infinite"-precision networks

using the same input sequences. The steady state value of P

was computed from these error vectors as:

Fig. 2. A diagonal element of
~
P versus the word-length of

weights. Solid lines show the theoretical results.

This can be explained by the neglection of the terms

proportional to µ2 in (14) (σσ
d

2 can be found in these terms).

Nevertheless, the first term in (21) will be dominant, so even

in this case we can estimate the output mean square error with

quite high accuracy.

5. CONCLUSIONS

The roundoff error analysis of the Oja's subspace rule has been

presented in this paper. We found that the accumulated error of

the fixed-point algorithm is proportional to the reciprocal value

of the learning rate parameter. Our model was verified by such

simulation experiments where the word-lengths were selected

according to practical considerations. The extension of the

analysis and the analysis of the early termination of the

algorithm are our further tasks.

REFERENCES

[1] Oja, E., Karhunen, J.: On stochastic approximation of the

eigenvectors and eigenvalues of the expectation of a

random matrix, Helsinki University of Technology, Report

TKK-F-A458, 1981

[2] Oja, E.: Neural networks, principal components and

subspaces. Int. J. Neural Syst. 1, 61-68. 1989{ }~

P = E
Tρρ ρρ (22)

[3] Sanger, T. D.: Optimal unsupervised learning in a single-

layer linear feedforward neural network; Neural

Networks, Vol. 2. 459-473, 1989

Since Q is diagonal in (18),
~
P should also be diagonal.

However, the results of the simulation experiments show that

the although the off-diagonal elements are much smaller then

the diagonal ones they are not equal to zeros. This deviation

comes from our assumptions and from the fact that the terms

proportional to µ 2

 in (14) were neglected. A further reason of

this difference is estimating
~
P only the results of 100 runs are

used. This was done because of the high computational

requirements of the trial runs.

[4] Kung, S.Y., Diamantaras, C. I.: "A Neural Network

Learning Algorithm for Adaptive Principal Component

Extraction (APEX)" Proc. of ICASSP 1990. Vol. 2 pp.

861-864.

[5] Sripad, A. B., Snyder, D. L.: A necessary and sufficient

condition for quantization error to be uniform and white

IEEE Trans on ASSP Vol. 25. 422-448. 1977.

[6] Rózsa Pál, Linear algebra, Tankönyvkiadó, Budapest 1991

(in Hungarian)
In Fig 2. we show a diagonal element of

~
P versus word-length

of weights with B
d

= 8 and some given µ for 4-dimensional

case. Similar results can be obtained for further simulation ex-

periments with different word-lenghts and input dimensions.

[7] Caraicos, C., Liu; B.: A roundoff error analysis of the

LMS adaptive algorithm; IEEE Trans. on ASSP, Vol. 32,

34-41. Febr. 1984
One can see that our estimator is too optimistic when µ is

large and the quantization of the data are significantly coarser

than the quantization of the weights.

[8] J. E. Mazo: On the independence theory of equalizer

convergence; Bell Syst. Tech. J., Vol. 58, 963-993, May-

June 1979

