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ABSTRACT

Starting from maximizing information 
ow through a non-
linear neuron Bell and Sejnowski derived adaptation equa-
tions for blind deconvolution using an FIR �lter [1]. In this
paper we will derive a simpler form of the adaptation and
we will apply it to more complex �lter structures, such as
recursive �lters. As an application, we study blind echo can-
cellation for speech signals. We will also present a method
that avoids whitening the signals in the procedure.

1. BLIND DECONVOLUTION

Assume an unknown signal s convolved with an unknown
�lter with impulse response a (which can be any kind of
a �lter, for example, a causal FIR �lter ak; k = 0; :::; La).
The resulting corrupted signal x is a convolution x = a � s.
The task is to recover s by learning a �lter w which reverses
the e�ect of �lter a so that u = w �x would be equal to the
original signal s upto a delay and a constant.
The corrupting �lter spreads information from one sam-

ple st to all the samples xt; :::; xt+La
. The task of blind de-

convolution is now to remove these redundancies assuming
that the samples of the original signal st are statistically in-
dependent. Some practical applications include blind acous-
tic echo cancellation, (where only the echo-corrupted signal
is available) and suppression of intersymbol interference in
communications (blind equalization) [3].

Several methods for blind deconvolution are based on the
fact that if a source signal having a non-Gaussian PDF
(probability density function) is convolved with a �lter, the
PDF of the resulting signal is closer to a Gaussian PDF
due to the central limit theorem. Deconvolution can then
be achieved by �nding a �lter which drives the output PDF
away from a Gaussian. Functions of higher-order statistics,
for example, kurtosis, can be used as a cost function to
minimize/maximize [6, 5, 2, 3, 4].
Bell and Sejnowski formulated blind deconvolution as

redundancy reduction between samples of data [1]. We
will �rst review their information maximization approach.
By viewing their approach rather as shaping of the out-
put PDF, we will show that the same learning rule can be
achieved via a slightly simpler path. We will show how
this facilitates learning more complicated �lter structures
for blind deconvolution. Finally, some experiments with
blind acoustic echo cancellation will be presented.

2. INFORMATION MAXIMIZATION

Bell and Sejnowski proposed to learn the restoring �lter
w by using an information theoretic measure [1]. In their

con�guration, w is a causal FIR �lter1.

ut =

LX
k=0

wkxt�k (1)

The output of the �lter is passed through a nonlinear
squashing function, for example, yt = g(ut) = tanh(ut). By
maximizing the information transferred through this system
(or, entropy of the output) a �lter is learned that removes
the redundancies.
The approach in [1] was to chop the signal x into blocks

of lengthM , represented as vectors X = [xt�(M�1); :::; xt]
T .

The �ltering is formulated as a multiplication of a block by
a lower triangular matrix with coe�cients of w, followed by
the nonlinear function g.

Y = g(U) = g(WX) ;

W =

2
6666664

w0 0 : : : 0 0
w1 w0 0 : : : 0
...

...
wL : : : w0 0
...

...
0 : : : wL : : : w0

3
7777775

When the information at transformed output block Y is
maximized, redundancies caused by a, the distorting �lter,
are removed within the block. Bell and Sejnowski showed
that information maximization is equal to maximizing the
entropy at the output, which can be written as the expec-
tation of the log probability density function of the output.
Since fY (Y ) = fX(X)=jJ j, where J is the Jacobian of the
whole system, we get

H(Y ) = �E[ln(fY (Y ))]

= �E[ln(fX(X)=jJ j)]

= E[lnjJ j] �E[ln(fX(X))]: (2)

Maximizing H(Y ) equals now maximizing E[lnjJ j], since
fX(X) does not depend on W . The Jacobian J tells how
the input a�ects the output and is written as the follow-
ing matrix of partial derivatives of each component of the
output vector with respect to each component of the input
vector, that is, J = [@yi=@xj ]ij .

We need to compute its determinant, which can be de-
composed into the determinant of the weight matrix and
the product of the slopes of the nonlinear function g. Since

1Subscripts refer to time, or, with �lter coe�cients to the
delay from the current sample. t refers to the present time. The
�lter coe�cient with zero delay from current sample xt is denoted
by w0 whereas in [1] wL was used.



W is a lower diagonal matrix its determinant is simply the
product of its diagonal values:

detJ = jJ j = (detW )

M�1Y
k=0

ŷt�k and

lnjJ j = ln(wM
0 ) +

M�1X
k=0

ln(ŷt�k)

where for the tanh function ŷt = @yt=@ut = 1� y2t .
The quantity to maximize is now E[lnjJ j]. By computing

the gradient of lnjJ j with respect to each weight wj , Bell
and Sejnowski derived a stochastic gradient ascent rule to
update the weights. For the zero delay weight:

�w0 _

@(lnjJ j)

@w0

= M
1

w0

+

M�1X
k=0

1

ŷt�k

@ŷt�k

@yt�k

@yt�k

@ut�k

@ut�k

@w0

=

M�1X
k=0

(
1

w0

� 2yt�kxt�k) (3)

In a similar fashion the update rule for all the other
weights can be derived:

�wj _

@(lnjJ j)

@wj

=

M�1�jX
k=0

(�2yt�kxt�k�j) (4)

3. SIMPLER DERIVATION

However, it is possible to arrive almost to the same rule via
a simpler route. This approach also allows simple derivation
of the learning rules for other types of �lters, for example,
for recursive �lters. Instead of looking at a block of output
samples, let us look at the output a single sample at the
time:

ut =

LX
k=0

wkxt�k; yt = g(ut): (5)

Since entropy of y, H(y) = �E[ln(fy(y))], is an expecta-
tion, the whole signal y is already taken into consideration.
Nothing is gained by maximizing an expectation over blocks
of y compared to maximizing an expectation over single

samples.
An intuitive rationale behind the approach is roughly as

follows. g(u) is chosen to be close to the true cumulative

density function (CDF) of the data2. Thus, the derivative
of g(u) is close to the probability density function (PDF)
of the data. On the other hand, the PDF of convolved
data approximates a Gaussian PDF due to the central limit
theorem. Now, when data is passed through a function
that approximates its CDF, the density of the output is
close to uniform density, which is the PDF that has the
largest entropy of all PDFs. The deconvolving �lter w can
be learned by passing the deconvolved signal u through g,
and by �nding the w which produces the true density of the
data, which in turn will be observed as uniform density at

2
tanh is a reasonable approximation of the cdf for positively

kurtotic signals (super-Gaussian), like speech.

the output of g. This is equal to maximizing the entropy of
the output.
In this single sample case the Jacobian of (5) is a scalar

J = y
0

t =
@yt

@xt
=

@yt

@ut

@ut

@xt
= ŷtw0 = (1� y

2
t )w0 (6)

As in the derivation of Bell and Sejnowski, we can arrive
at a stochastic gradient ascent rule by taking the gradient
of ln(J) with respect to the weights. Let us �rst compute

@y0t
@w0

= ŷt + w0
@ŷt

@w0

= ŷt � 2w0ytŷtxt

The adaptation rule for w0 is now readily obtained:

�w0 _
@ln(y0t)

@w0

=
1

y0t

@y0t
@w0

=
1

w0

� 2ytxt (7)

By �rst computing

@y0t
@wj

= �2w0ytŷtxt�j ; (8)

we can derive the following rule for the other weights:

�wj _
1

y0t

@y0t
@wj

= �2ytxt�j (9)

What is the di�erence between the adaptation rules of
Bell and Sejnowski, (3) and (4), and the rules (7) and (9)?
In practice there is not much di�erence. (3) and (4) accu-
mulate the weight changes in a block of M samples before
doing the adjustment. Our rule is a true stochastic gradient
ascent rule for each sample separately. In practice, with this
kind of adaptation rules it is good to accumulate the weight
changes from a number of training samples before making
the change to the actual weights. How many samples to use
can be determined by experimentation.
In addition, (4) has an adverse border e�ect if M is not

much larger than L. Fewer samples of data (only M-L sam-
ples) contribute to weights at the end of �lter w compared
to weights in the beginning of the �lter (M samples). Thus
looking at the data one sample at the time results in a more
accurate adaptation rule. However, the biggest advantage
is that it allows simple derivation of the adaptation for more
complex �lter structures. We will look at recursive �lters
in the next section.

4. RECURSIVE FILTERS

We will now look at a recursive �lter (IIR) in the direct form
and derive the adaptation equations in the similar fashion
as above. The �lter output before the nonlinearity is

ut = w0xt +

LX
k=1

wkut�k (10)

The quantity to maximize remains the same, E[ln(J)].
The Jacobian of the �lter is now exactly the same as in
equation (6). Also @y0t=@w0 and the adaptation rule for w0

turn out to be the same as for an FIR-�lter, which should
be no surprise since the �lters are equal as far as w0 is
concerned. To derive the adaptation for other weights wj ,
we will �rst write

@y0t
@wj

=
@(1� y2t )w0

@wj

= w0(�2yt)ŷt
@ut

@wj

: (11)



A di�culty is caused by @ut=@wj which is a recursive
quantity. Taking the derivative of (10) with respect to wj

gives:
@ut

@wj

= ut�j + wj
@ut�j

@wj

= ut�j + wj(ut�2j + wj
@ut�2j

@wj

)

=

t=jX
k=1

(wj)
k�1

ut�k:j : (12)

We will �rst de�ne the following recursive quantity in
a fashion similar to deriving LMS algorithm for adaptive
recursive �lters [7]:

�
t
j �

@ut

@wj

= ut�j + wj�
t�j
j (13)

Now we can readily obtain the rule for wj

�wj _
1

y0t

@y0t
@wj

= �2yt�
t
j (14)

However, it will be necessary to keep track of �tj for each
�lter coe�cient wj .
We will now show that an approximation of this rule leads

to the same convergence condition (see [1] for an interpreta-
tion of the convergence condition as an independence test).
Convergence of the adaptation rule (14) is achieved when
the weight change becomes zero, that is when

E[�wj ] = E[�2yt�
t
j ] = E[yt

t=jX
k=1

(wj)
k�1

ut�k:j ] = 0

,

t=jX
k=1

(wj)
k�1

E[ytut�k:j ] = 0

holds for all j. This is true if E[ytut�j ] = 0 for all j, a more
restrictive condition, which is the convergence condition of
the adaptation rule obtained from (14) by replacing �tj by
ut�j yielding

�wj _ �2ytut�j (15)

This is our �nal adaptation rule for the coe�cients of the
recursive �lter. Comparing (15) to (13) shows that in e�ect
we have dropped the second term from the right side of
(13). We will show experimentally in Sec. 5. that there is
no di�erence between learning rules (14) and (15).
For an e�ective implementation it is necessary to use the

training data sequentially, because the previous values of
ut�j must be stored in a bu�er. In contrast, the FIR �lter
can be trained by picking the training points randomly in
the signal.
The same approach can be applied to �lters of any form,

for example, to a �lter that is a cascade of second order
sections, to a lattice �lter, to a nonlinear �lter, ect.

5. ECHO CANCELLATION EXPERIMENTS

We will now present some examples of blind echo cancella-
tion using speech signals and arti�cial echoes. In all experi-
ments we used the same recording of 7 seconds of speech as
the training material. The gradient was accumulated from
100 speech samples before updating the weights, and 10000
- 40000 gradient updates were performed.

Short-time prewhitening. Note that speech signals
violate the assumption of samples being independent. The
speech signal contains other dependencies besides the pos-
sible echos. Consecutive samples of a speech signal are very
dependent of each other, and the strongest of these depen-
dencies have a scope of about 2 milliseconds, corresponding
to 16 samples at the sampling frequency of 8 kHz. Apply-
ing blind deconvolution to a speech signal results in a �lter
that produces whitened output, i.e., all time-dependencies
will be removed. This is not a desirable side e�ect in speech
signal processing. However, this e�ect can be avoided us-
ing the following scheme: The short-time dependencies in
the speech signals will be �rst removed by a whitening �l-
ter with a short time span (for example, 20-100 samples at
8kHz sampling frequency). Figure 1 depicts such a whitener
that has 60 taps, also learned using blind deconvolution.
This whitener only removes the inherent dependencies in

the speech signal (on the average) leaving echoes with longer
delays intact. Now, blind deconvolution can be applied to
learn the echo removal �lter from the whitened signal. Fi-
nally, the learned �lter will be applied to the original speech
signal, which contains both the inherent short-time depen-
dencies, and the echo-related dependencies with longer de-
lays. The e�ect is to remove only the echoes leaving the
speech signal otherwise intact. Note that this only works
if the unwanted dependencies have longer delays than the
desired ones. This scheme was used in all following experi-
ments.
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Figure 1. Coe�cients of a whitener of 60 taps.

Single echo. For this experiment, a single echo with
amplitude 0:5 was added to a speech signal at a delay of 500
samples, corresponding to a delay of 1/16 seconds at 8kHz
sampling frequency. The length of the prewhitener was 100
taps in this and in the following experiments. First, an FIR
blind echo removal �lter of 2002 taps was trained using (7)
and (9). The coe�cients of the resulting �lter are depicted
in Fig. 2 (The zeroth coe�cient will always be equal to one,
but it will be cut out of this and the following �gures due
to space limitations).
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Figure 2. Coe�cients of a blind single echo cancelling FIR
�lter.
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Figure 3. Coe�cients 1-200 of a blind single echo can-
celling FIR �lter.

This �lter should have a negative peak at the delay of 500
samples, with amplitude corresponding to the echo ampli-
tude. As the ideal FIR has an in�nite length for this task,
there should also be exponentially decaying peaks at integer
multiplies of these delay values. This seems to be the case.



The audible quality of the deconvolved signal was good, the
echo was removed with no other e�ects. To give an idea of
how accurate the �lter coe�cients are, coe�cients of taps
1-200 are depicted in Fig. 3 with more resolution. Ideally,
all these should be zeroes. As a messure of goodness we
computed the following:

Pdiff =
power(IRideal � IRlearned)

power(IRideal)
: (16)

For this FIR �lter Pdiff equals -12.4dB. This is caused by
the noise due to about 2000 nonzero coe�cients that are
supposed to be zero ideally.
Next, we trained a recursive �lter of 502 taps for the same

task using (7) and (15). Since the �lter is in the direct
form, only one nonzero coe�cient at the delay of the echo
is su�cient for the task. The resulting �lter coe�cients are
shown in Fig. 4, and they appear to be in order.
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Figure 4. Coe�cients of a blind single echo cancelling IIR
�lter.

The impulse response of the recursive �lter (Fig. 5) is
almost identical to the impulse response of the FIR �lter
which had four times the number of taps and thus also four
times the computational complexity. The audible quality of
the result processed with the IIR deconvolver was similar
to the FIR deconvolver. For this IIR �lter Pdiff amounts
to -10.2dB, which is visible comparing Figures 2 and 5.
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Figure 5. Impulse response (2002 samples) of a blind sin-
gle echo cancelling IIR �lter.

Double echo. Now, two arti�cial echoes were added to a
speech signal, at delays of 200 and 500 samples, both with
amplitude 0:5. Filters similar to previous experiment are
depicted in Figs 6, 7, and 8 for this task.
Full adaptation. Finally, we applied the full recursive

adaptation of (13) and (14) to IIR �lters in the single echo
case. Resulting �lter coe�cients and the impulse response
are depicted in Figs. 9 and 10. Comparing these to the
�lter trained with the approximative adaptation (Figs. 4
and 5) reveals that there are no di�erences.

6. CONCLUSION

We have shown that the information maximization princi-
ple for blind deconvolution can be extended to more com-
plex �lter structures than FIR �lters. As an example, we
derived the adaptation equations for a recursive �lter (IIR
�lter) in direct form. An advantage in using recursive �lters
is that they are able to model complicated and long impulse
responses with a small number of coe�cients, and with a
small computational complexity. A limitation with recur-
sive �lters is that if the inverse of the convolving �lter a is
unstable, the deconvolving w will be unstable and cannot
be learned using this procedure.
To illustrate the adaptation of the �lters, we presented

speech signal echo cancellation examples together with a
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Figure 6. Coe�cients of a blind double echo cancelling
FIR �lter.
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Figure 7. Coe�cients of a blind double echo cancelling
IIR �lter.
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Figure 8. Impulse response (2002 samples) of a blind dou-
ble echo cancelling IIR �lter.
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Figure 9. Coe�cients of a blind single echo cancelling IIR
�lter trained using full recursive adaptation.
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Figure 10. Impulse response (2002 samples) of a blind
single echo cancelling IIR �lter trained using full recursive
adaptation.

method that avoids whitening the signals, which otherwise
would be an undesirable side e�ect of blind deconvolution.
Future work includes analysis of the convergence of the

adaptation, adding �lter stability conditions directly to the
adaptation, and analysis of the misadjustment in the adap-
tation, i.e., how close the solution is to the ideal solution.
This will de�nitely turn out to be an issue with long �lters
as the sum of small misadjustments through a long �lter
amounts to a signi�cant proportion of noise in the result.
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