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ABSTRACT

The purpose of this contribution is to investigate some

techniques for �nding the relevant lag-space, i.e. input

information, for time series modelling. This is an im-

portant aspect of time series modelling, as it conditions

the design of the model through the regressor vector

a.k.a. input layer in a neural network. We give a rough

description of the problem, insist on the concept of gen-

eralisation, and propose a generalisation-based method.

We compare it to a non-parametric test, and carry out

experiments, both on the well-known H�enon map, and

on a real data set.

1. INTRODUCTION

Let us assume that a time series is obtained from a

mapping Xt = f (Xt�u1 ; Xt�u2; : : : ; Xt�um). The m

delays can include long term dependencies, in order to

take into account e.g. some seasonality. The (ui) are

the primary dependencies, the smallest set of su�cient,

not necessarily consecutive delays. All other depend-

encies are obtained through a combination of mappings

and are dubbed higher order dependencies.

The use of higher order dependencies in the model-

ling process leads to possibly over-parameterised, and

thus less e�cient, models. It is therefore of import-

ance to try and estimate the optimal lag-space, i.e. �nd

the primary dependencies. This allows to minimise the

number of parameters and optimises the predictive abil-

ities.

In the following, we recall the concept of generalisa-

tion, and introduce a generalisation-based method for

estimating the lag-space of time series. We also evoke

a non-parametric method for �nding the embedding di-

mension of time series, to which our results will be com-

pared. Experiments are carried out on two problems:

a small arti�cial design inspired from the H�enon map,

and a real data set. The results are discussed and future

prospects are singled out.
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2. GENERALISATION ESTIMATES

Let us consider a model fw of the time series mapping.

x will denote the set of input delays Xt�u while y is the

output bXt. The training set contains N input-output

examples sampled from the system. An estimate of the

optimal parameters is usually obtained by minimising

the average residuals (empirical risk), possibly augmen-

ted with a regularisation term:

S(w) =
1

N

NX
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�
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�2
(1)

The performance of the model is the ability to generalise

to previously unseen cases, measured by the average

risk or generalisation error:

G(w) =

Z
(fw(x)� y)

2
p(y; x) dx dy (2)

In terms of generalisation error, the optimal lag-space

is one that minimises G(w). Note that for di�erent sets

of inputs, the model, and thus w will di�er. The gener-

alisation error is usually impossible to calculate. A cru-

cial issue is thus to estimateG. Common such estimates

are provided by cross-validation methods. With some

assumptions on the problem, algebraic estimates of the

generalisation error [6, 5] o�er a handy and computa-

tionally e�cient alternative [2]. Let us e.g. consider a

generalisation of the FPE [1]:

bGFPE ( bw) =
 
N + bP
N �

bP
!
S( bw) (3)

where bP is the e�ective number of parameters, the cal-

culation of which depends on the regularisationmethod.

In that context, let us introduce a generalisation-

based method for estimating the relevant lag-space: the

na��ve generalisation (NG) method. It consists in se-

lecting the delays that lead to a decrease in estimated

generalisation error. In order to avoid delays corres-

ponding to a marginal decrease in error, we introduce



a selection parameter �. E.g. if � = 0:99, a candid-

ate delay has to outperform the current selection by at

least 1%. The algorithm is the following:

1. Initialise: d = 0; Gmin = �2x; no input selected.

2. Model: d = d + 1; add delay t � d to selected

inputs; calculate bG for resulting model.

3. Test: if bG
Gmin

< �, select delay t� d; Gmin = bG.
Otherwise discard delay.

4. Goto step 2 until stop condition is reached.

The selection terminates when a stop condition is

reached. It can relate to e.g. bG or the maximum ad-

missible delay.

3. EMBEDDING DIMENSION

The �-test was introduced by [7] to determine the em-

bedding dimension of time series. It relies on a con-

tinuity argument, with a smoothness assumption. It

roughly considers that for a well determined input

space, close inputs should correspond to close outputs.

When the lag-space is lacking some information, close

inputs can lead to arbitrarily1 far outputs due to the

e�ect of the missing delay(s). On the other hand, inclu-

sion of an irrelevant delay can make arbitrarily far in-

puts (along the dimension corresponding to that delay)

correspond to close outputs.

It is an entirely non-parametric test, relying only on

the data. It does not need the speci�cation of a model

(step 2 above). A detailed presentation of the �-test is

not possible in the space alloted here, and the reader is

referred to [7] for a thorough presentation.

4. H�ENON MAP

First we compare both lag-space selection techniques

on a modi�ed version of the well-known H�enon map.

We generate 1000 data on this chaotic time series for

training, as well as a validation set containing 10000

examples, using the expression:

Xt = 1� a:X2
t�2 + b:Xt�4 (4)

with a = 1; 4 and b = 0; 3. Delays 2 and 4 have been

used here instead of 1 and 2 to check the methods' abil-

ity to detect \gaps" in the lag-space. Performing the

�-test on the training set leads to the choice of 2 and 4

as relevant delays (as expected).

1in the limit of the data variation.

We have used the na��ve generalisation method with

two di�erent kinds of estimation: a linear model, us-

ing the FPE as a generalisation estimate, and a non-

parametric kernel smoother, together with the leave-

one-out (LOO) cross-validation estimate of generalisa-

tion error. The NG method selects all even delays from

2 to 12 in the linear case, and delays 2 and 4 for the

kernel smoother, leading to the following performance:

Non-noisy map #inp S( bw) bG( bw) Valid.

Linear (NG) 6 0,361 0,380 0,365

Linear (�) 2 0,429 0,431 0,454

Kernel (NG) 2 0,000 0,000 0,000

Kernel (�) 2 0,000 0,000 0,000

The bG( bw) column displays the generalisation estimate

(either FPE or LOO), and the last column contains the

mean squared error measured on the validation set of

10000 elements.

We also perform some experiments adding Gaussian

noise with � = 0:2 on the training data. In that case,

NG selects one additional delay for the linear model

(t� 20) as well as for the kernel smoother (t� 6). Per-

formance is shown in the following table, where the val-

idation error is calculated on non-noisy data:

Noisy data #inp S( bw) bG( bw) Valid.

Linear (NG) 7 0,408 0,414 0,383

Linear (�) 2 0,475 0,477 0,453

Kernel (NG) 3 0,095 0,117 0,025

Kernel (�) 2 0,145 0,158 0,027

These experiments suggest a useful feature of NG: when

the model is insu�cient (linear model), it selects addi-

tional delays. It thus yields signi�cantly better gener-

alisation performance than the \optimal" set of delays.

5. REAL DATA EXPERIMENTS

We will now attempt to estimate the lag-space of a

real time series for which this information is unknown.

The data contains the mean monthly 
ow of the Fraser

river at Hope (British Columbia), from March 1913 to

December 1990, amounting to 946 measurements2. Fig-

ure 1 displays the time series between June 1921 and

October 1929. Predictably, it exhibits a roughly peri-

odic feature, reaching maxima every 11 to 13 month

(mostly in June). Otherwise, the behaviour seems

chaotic.

We use only 315 (one third) of the available data to

estimate the lag-space, leaving the rest (631) as valid-

ation set to provide an empirical estimate of the gen-

eralisation error. Furthermore, the estimation will be

2Data set available from statlib in the datasets directory.
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Figure 1: Mean monthly 
ow of the Fraser River at

Hope (B.C.). June 1921 is data no. 100.

performed on log-values of the data, which possess a

better distribution than the raw data.

Performing a �-test on the Fraser river data leads us

to select delays 1, 2, 4, 7, 8 and 11 as relevant inputs.

Linear modelling

First we consider a linear model. The following delays

lead to a signi�cant decrease in generalisation error: 1,

2, 4{7, 10{13, 16, 23{26, 35, 43, 48 and 49. The NG

method thus produces a model with 19 parameters.

Please note that as the maximum delay d increases,

the number of available examples decreases. With our

315-long sequence, we produce 314 training examples

with d = 1, but only 285 when d = 30. The number of

examples in (3) is N = 315� d, so that the ratio N+P
N�P

grows as d increases.

Refer to section 6 for detailed results.

Non-linear modelling

We address the issue of non-linear modelling through

the use of neural networks models. These models have

been applied extensively in the past few years, in many

�elds including signal processing. We will here con-

sider a standard multi-layered perceptrons model with

n inputs, one hidden layer containing Nh cells and one

output:

fw(x) =

NhX
j=1

Wj :h

 
nX
i=1

wji:xi +wj0

!
+W0 (5)

where h(�) is the|usually sigmo��d|transfer function.

wij is the weight of the connection from input i to hid-

den cell j and Wj the weight of the connection from

hidden cell j to the output. W0 and the wj0 are the

biases of the model.

The model is identi�ed by minimising (1) added with

a weight decay for regularisation purposes. The count

of the number of e�ective parameters is done as in [6].

It is extremely important to get an accurate estimate

of bP as the total number of parameters in multi-layered

perceptrons grows rapidly with the size of the input:

the total number of parameter is P = (n + 2)Nh + 1.

If we limit the number of hidden cells to 5, a neural

network with 12 inputs contains 71 parameters, which

compares unfavourably with the 303 training patterns

available.

Using Nh = 5 hidden units, the NG method estimates

that the relevant inputs are delays 1-4, 7, 10, 11 and

23, resulting in a 56 parameters network. On the other

hand, using the embedding dimension information, the

network is limited to 6 inputs and 41 parameters.

Non-parametric modelling

All results are compared to a non-parametric modelling

technique: a kernel smoother using a Gaussian kernel

shape3 [3]. Generalisation is assessed by the leave-one-

out cross-validation estimate, which is also used to tune

the kernel size. The NG method selects a total of 14

relevant delays: 1{4, 6{8, 10, 11, 13, 19, 24, 26 and 27.

6. RESULTS AND DISCUSSION

Results for all models and both lag-space estimation

schemes are gathered in the following table for compar-

ison. The predictions provided by the linear and non-

linear models (using the NG method) are displayed on

�gure 2. Notice that the �rst peak is poorly predicted

by the linear model, and almost perfectly by the neural

network. Otherwise, both predictions are very close, as

indicated by the similar generalisation error scores.

Model #inp. S( bw) bG( bw) Valid.

Linear (NG) 19 0,0449 0,0518 0,0444

Linear (�) 6 0,0696 0,0724 0,0618

Kernel (NG) 14 0,0220 0,0635 0,0566

Kernel (�) 6 0,0432 0,0693 0,0537

Neur.net (NG) 9 0,0381 0,0562 0,0439

Neur.net (�) 6 0,0490 0,0643 0,0487

From these results we see that though NG is a rather

coarse method, it outperforms the �-test for both lin-

ear and non-linear modelling. On the other hand, NG

3simulations carried out with other kernel shapes lead to sim-

ilar performance.



Measured flow        
Linear prediction    
Neural net prediction

Aug. 1939 June 1941 June 1943 May  1945
0

2000

4000

6000

8000

Month

F
lo

w
 (

m
3/

s)

Measured vs. predicted flow

Figure 2: Time series and prediction for two models.

selects more inputs, leading to a higher number of para-

meters. For comparison, let us mention that the �rst

6 parameters selected by NG with the linear model

yield a performance (both in training and generalisa-

tion) around 0; 1.

Neural networks are an interesting alternative,

providing good results, i.e. low generalisation error, for

a reduced number of inputs. This is indeed expected,

given their non-linear nature, and universal approxim-

ation properties.

In all these experiments, we notice that the gener-

alisation estimates are often over-estimated, but they

manage to \keep the information" i.e. low estimates

correspond to low generalisation error, as long as we

restrict the comparison to the same kind of estimates

and the same class of models.

Furthermore, the experiments give several insights

into lag-space estimation for time series modelling:

1. The �-test yields homogeneous results and depends

only on the data. The speci�cation of a model is

actually not even necessary.

2. On the other hand, the NG method is model de-

pendent. It has to be applied for each model and

can prove really time-consuming.

3. In our experiments, the NG method tends to select

more delays, further in the past, as long as the

(estimated) generalisation error decreases.

4. The non-parametric �-test needs a large amount

of data to provide reliable results. On the other

hand, the rougher NG uses the available data to

probe further into the lag-space (e.g. delay 49 for

the linear model).

5. The na��ve generalisation method is a typical for-

ward selection procedure [4]. Performing a back-

ward elimination step along the same lines on the

set of inputs selected for the Neural Networks, we

realise that deleting inputs 4, 7, 10 and 23 actually

leads to a decrease in (estimated) generalisation

error. The resulting neural network has only 5 in-

puts, and 0; 0423 / 0; 0542 / 0; 0425 as training, es-

timated generalisation and validation performance

(respectively).

The main prospect for future work is linked to the treat-

ment of relevance in the NG method. Here we check

this relevance by simply comparing the generalisation

estimates, using � as a \level of signi�cance". The use

of statistical tests for checking this relevance is an ob-

vious improvement to this method. Work along this

line is in progress and will be the object of a future

communication.
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