
RATES OF CONVERGENCE OF THE RECURSIVE RADIAL BASIS FUNCTION

NETWORKS

J. Mazurek1 A. Krzy_zak2 � A. Cichocki3

1Neurolab GmbH, Germany, email jama@nws.e-technik.tu-muenchen.de
2Dept. of Computer Science, Concordia University, Canada, email krzy_zak@cs.condordia.ca
3FRP Riken, Lab. for Arti�cial Brain Systems, Wako-city, Japan, email cia@zoo.riken.go.jp

ABSTRACT

Recursive radial basis function (RRBF) neural networks
are introduced and discussed. We study in detail the nets
with diagonal receptive �eld matrices. Parameters of the
networks are learned by a simple procedure. Convergence
and the rates of convergence of RRBF nets in the mean
integrated absolute error (MIAE) sense are studied under
mild conditions imposed on some of the network parame-
ters. Obtained results give also upper bounds on the per-
formance of RRBF nets learned by minimizing empirical L1
error.

1. INTRODUCTION

A large number of the multilayer feedforward networks de-
scribed in the literature consist of units that compute an
inner product of a weight vector and input vector followed
by a nonlinear activation function (e.g. sigmoidal function),
see e.g. Cichocki and Unbehauen [3]. However recently
a number of authors have discussed the use of processing
units that compute a distance measure between an input
vector and a weight vector, usually followed by a Gaussian
shaped function. Radial basis function (RBF) nets are ex-
amples of such networks. RBF net contains only one hidden
layer with processing nodes which realize the radial basis
function. Furthermore, the activation functions are usually
nonmonotonic and local. The output units perform sim-
ple linearly weighted summation of its inputs. A number
of theoretical results on Radial Basis Function (RBF) net-
works have been obtained, see Xu, Krzy_zak and Yuille [17]
for a long list of references. It has been shown that RBF
nets can be naturally derived from the regularization theory

(Poggio and Girosi [13], and that RBF nets have the univer-
sal approximation ability (Hartman, Keeler and Kowalski
[7], Park and Sandberg [12]) as well as the so-called best ap-
proximation ability (Girosi et al [5]). Specht [15] introduced
probabilistic neural networks and pointed out the connec-
tion between RBF nets and Parzen window estimators of
probability density [14]. Xu et al [17] found the connec-
tion between RBF nets and kernel regression estimate [6]
and studied universal convergence and upper bounds on the
rates of convergence of RBF nets. Rates of convergence of
RBF nets approximation error were studied by Girosi and
Anzellotti [4] and the rates of estimation error are given by
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Niogy and Girosi [11].
Most theoretical studies on RBF nets were limited to non-

recursive versions in which radial functions were identical
at each hidden node. Recently Krzy_zak and Linder [8] con-
sidered general recursive RBF nets (with general receptive
�eld matrix). Niogy and Girosi [11] considered the recursive
RBF nets with receptive �eld matrix being the identity ma-
trix. In both papers the learning process was carried out by
computationally intensive minimization of the empirical L2
error. In the present paper we consider recursive RBF nets
(RRBF nets) with diagonal receptive �eld matrices. These
nets are fairly simple but also very exible and su�cient for
most applications. The nets are trained by a simple pro-
cedure randomly selecting centers and output weights from
the training sequence. The performance of the nets is mea-
sured by the mean integrated absolute error (MIAE) which
is important measure in robust estimation. We study gen-
eralization ability of RRBF nets together with convergence
and the rates of convergence. Our results provide also upper
bound on the performance of general RRBF with positively
de�ned receptive �eld matrices and with parameters learned
by minimization of the empirical L1 error.

2. RBF AND RRBF NETS

Let (X;Y ) be a pair of random vectors in Rd � Rm and
R(x) = EfY jX = xg = [r(1)(x); � � � ; r(m)(x)]T be the cor-
responding regression function. Let � denote the probabil-
ity measure of X. Consider a network fn;N (x) learned by
a training set DN = fXi; Yig

N
1 , where N is the number of

training samples and n is the size of the network, e.g. the
number of hidden neurons in the network. Two types of
RBF nets are prevalent in the literature:

� standard nets [5, 8, 12]

gn(x) =

nX
i=1

wiK([x� ci]
t��1[x� ci]) (1)

� normalized nets [10, 17]

gn(x) =

Pn

i=1
wiK([x� ci]

t��1[x� ci])Pn

i=1
K([x� ci]t��1[x� ci])

(2)

where K(r2) is a radial basis function, ci; i = 1; : : : ; n are
the center vectors, wi; i = 1; : : : ; n are the weight vectors
and � is arbitrary d � d positive de�nite matrix which



controls the receptive �eld of the basis functions. The
most common choice for K(r2) is the Gaussian function,

K(r2) = e�r
2

with � = diag(�1(n)
2; : : : ; �d(n)

2), but other
functions have also been used (see [13] for other choices).
Networks (1) are related to Parzen density estimate

pn(x) = pn(x;D
g
n) =

1

nhdn

nX
i=1

�(
x�Xi

hn
)

where � is the normalized kernel and hn is a bandwidth (see
Scott [14] and references therein), and to so called proba-

bilistic neural network proposed by Specht [15]. Networks
(2) are related to the kernel regression estimate [6, 17]

Rn(x) =

Pn

i=1
Yi�(

x�Xi

hn
)Pn

i=1
�(x�Xi

hn
)

which is the weighted average of Yi which approximates
conditional mean of the output given input E(Y jX = x)
with adjustable weights nonlinearly depending on the input
observations and x.
In the present paper we consider the recursive version of

(2)

fn(x) =

Pn

i=1
wiK([x� ci]

t��1i [x� ci])Pn

i=1
K([x� ci]t�

�1
i [x� ci])

(3)

in which all the parameters besides �i are de�ned as in
(2) and the receptive �eld is a diagonal matrix �i =
diag(�2i1; : : : ; �

2
id). To simplify the notation de�ne K(r) =

�(r2), jjxijj = [
Pd

k=1
x2ik]

1=2; jjxijj��1 = [xti�
�1xi]

1=2 =

[
Pd

k=1
(xik=�ik)

2]1=2; xi = (xi1; : : : ; xid)
t. All the param-

eters to be learned may be gathered into vector � =
(w1; : : : ; wn; c1; : : : ; cn;�1; : : : ;�n). The following are the
possible learning strategies

1. minimize the empirical error with respect to � (see e.g.
[1]), i.e.

min
�

1

N

NX
i=1

jYi � fn(Xi)j ! �
�
: (4)

Denote the resulting optimal net by f�n;N .

2. cluster Xi in DN and assign ci to cluster centers. Re-
maining parameters are obtained by minimization pro-
cess in (4)

3. assuming that the size of the learning sequence is larger
than the number of nodes in the hidden layer (N > n)
draw a subset Dn = fXi; Yig

n
1 from DN and assign

Xi ! ci; Yi ! wi; i = 1; : : : ; n and choose �i according
to the rules given in the next section.

Of the three strategies described above we choose strat-
egy (3) as the simplest but still yielding convergent RRBF
nets (see section 3). Thus network (3) has been reduced to
RRBF net

fn(x) =

Pn

i=1
YiK([x�Xi]

t��1i [x�Xi])Pn

i=1
K([x�Xi]t�

�1
i [x�Xi])

: (5)

It is clear that K(jjxjj��1) is no longer radially symmetric
function of x even when K(x) is, since jjxjj��1 = const
is an ellipsoid with axes parallel to coordinate axes. Most
of the results in the literature were obtained for radially
symmetric receptive �elds [2, 10, 13], but our convergence
results in the next section do not require radially symmetric
basis functions.

The performance of network (5) can be measured by ei-
ther

EjR(X)� fn(X)j (6)

or

EjR(X1)� fn(X1)j (7)

where X in (6) is independent of DN (generalization) and
X1 in (7) is the �rst measurement in DN (no generalization).
We consider index (7) since we can bound the performance
of f�n;N by (7)

EjY1 � g
�
n;N (X1)j � EjY1 � fn(X1)j

when learning strategy 1. is used (this is MIAE analog of
Lemma 1 in [17]). Since convergence analysis of index (6)
easily follows from analysis of (7) the convergence analysis
in the next section is con�ned to (7).

3. CONVERGENCE AND RATES OF RRBF

NETS

In this section we study asymptotic behavior of RRBF nets.
The next theorem gives su�cient conditions for convergence
of net (5) when the size of the learning sequence increases
without restrictions.

Theorem 1 (RRBF convergence) Let EjY j <1,

c1IS0;r � K(x)� c2IS0;R ; 0 < r < R <1; c1; c2 > 0
(8)

and assume

n
Qd

i=1
�i !1

lim supn

P
n

i=1

Q
d

k=1
�ik

n
Q

d

k=1
�k

=  <1

P
n

i=1

Q
d

k=1
�ikIfjj�ijj��g

n
Q

d

k=1
�k

! 0

as n!1,

where IA denotes indicator of set A, Sx;r = fy : jjy� xjj �
rg, �k = min1�i�n �ik; k = 1; � � � ; d and jj�jj is an Euclidean

matrix or vector norm. Then

EjR(X1)� fn(X1)j ! 0

as n !1.

In Theorem 1 a natural condition EjY j < 1 is imposed
on the output. Assumption (8) is satis�ed for arbitrary
�nite kernels compactly supported and bounded away from
zero at the origin.



Theorem 2 (RRBF convergence rate) Let � denote

the probability measure of X with a compact support,

EjY j1+s <1 s > 0 and

c1IS0;r � K(x)� c2IS0;R ; 0 < r < R <1; c1; c2 > 0

� ! 0; ns=(s+2)
Qd

i=1
�i !1

as n!1:

Also let R satisfy Lipschitz condition

jR(x)�R(y)j � �jjx� yjj�; 0 < � � 1; � > 0:

Then

EjR(X1)� fn(X1)j

= O

�
max

�
1p

ns=(2+s)�
;

P
n

i=1
jj�i jj

�
Q

d

k=1
�ik

n�

��

where � =
Qd

k=1
�k.

When �i have all diagonal elements identical then the

MIAE convergence rate above becomes O(n
� �s

(2+s)(2�+d) ).

4. SIMULATION RESULTS

In Figures 1-3 we show the exemplary simulations re-
sults in application to the function approximation prob-
lem by the standard and generalized RBF networks. We
use several adaptive learning algorithms and several radial
functions, and we learn output weights, centers and co-
variance matrices by minimizing empirical L1 and L2 er-
rors using stochastic gradient descent approach [3]. We
tested the algorithms, e.g. on the folowing 2D func-
tions: wave f(x1; x2) = x1 exp[�(x

2
1 + (x2=0:75)

2)], som-

brero f(x1; x2) = sin(
p
x21 + x22)=

p
x21 + x22 and other well-

known data-set benchmarks. We have extensively investi-
gated and compared various network architectures: SRBF
(Standard RBF), ERBF (Eliptic RBF), HRBF (Hyper
RBF), GPFN (Gaussian Potential Function Network) and
SIGPI (Sigma-Pi Networks); as well as di�erent adaptive
learning algorithms: BP (Backpropagation), BPO (Back-
propgation Online), DBD (Delta-Bar-Delta), SSAB (Super
Self Adapting Backprop), RPROP (Resilient Propagation),
MRPROP (modi�ed RPROP), MSSAB (modi�ed SSAB)
[3, 9]. In computer simulations we have compared existing
learning algorithms with new ones: MRPROP and MSSAB.
The results indicate that the generalized RBF networks
(ERBF, HRBF and SIGPI) with associated new learning
algorithms converge faster and ensure better performance
for general data-sets than standard models. In the sim-
ulations we used Matlab v. 4.2c and custom-made RBF
simulator.

5. CONCLUSIONS

It has been shown that the mean integrated absolute error
of recursive RBF nets converges to zero when the size of the
network increases and parameters controlling the receptive
�eld are simultaneously appropriately adjusted. General-
ization of the results of this paper to general recursive RBF
nets with positive de�nite matrices � is straightforward.
More studies are needed on the analysis of recursive RBF
nets with centers determined by clustering of the training
sequence.
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a) SRBF network
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b) HRBF network
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c) RPROP algorithm
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d) MRPROP algorithm

Figure 1. Training error versus number of ops for

various training algorithms and network structures

for sombrero function with 15 hidden neurons.
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a) HRBF network
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b) GPFN network

Figure 2. Approximation of sombrero function with

mrprop algorithm and 15 hidden neurons after 200

epochs.
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Figure 3. Approximation of wave function with 9

hidden neurons. Training error versus number of

ops for various network structures and training al-

gorithms.


