
ABSTRACT

Two self-organizing principles for the competitive identifi-
cation and segmentation of piecewise stationary time
series are described. In the first, a neighborhood map of
one step predictors competes for the data during training.
The winner is granted the largest parameter update, while
other predictors are allowed smaller updates, decreasing
with distance from the winner on the neighborhood map.
In addition to performing piecewise segmentation and
identification, the technique maps similar segments of the
time series as neighbors on the neighborhood map. In the
second, we propose a new cost function for competitive
prediction that imbeds memory in the error metric and
couples the memory with the degree of competition. Per-
forming gradient descent on the cost function yields a self-
annealing system that can also perform piecewise segmen-
tation and identification of a time series.

1. INTRODUCTION

Many real world signals are created by systems that have
time varying parameters (i.e. speech). In such cases an
important engineering problem is to find regions where the
signal properties are reasonably constant before attempt-
ing further block oriented signal processing (such as spec-
tral analysis). Conventional signal processing schemes for
segmentation have not produced good results. Pawelzik et.
al. [7] have recently proposed an architecture for segmen-
tation called the Annealed Competition of Experts (ACE).
An alternative is based on the Mixture of Experts [2],
called Non-linear Gated Experts [8]. These two algorithms
both employ a set of expert predictors, but differ in their
implementation of the gate, which assesses which expert is
valid at each time step. Here we describe two algorithms
for identification and segmentation where the gate is
dependent on both the input and output, through the error.

2. NEIGHBORHOOD MAP OF PREDICTORS

Our implementation [1] is shown in Figure 1. A set of pre-
dictors works in parallel in the input time series. The win-
ning predictor is the one with the smallest composite
squared error:

(1)

where the memory of the squared error is computed using
an exponentially decaying window,

, (2)

where ei is the instantaneous squared error of the ith pre-

dictor and λ is the memory term (0<λ<1). The effective
memory depth, in number of samples, can be shown to be

. We will show later how to adapt the memory depth,
but for the results presented, the optimal memory depth
was experimentally determined from the time series. The
gating function, which moderates the learning rate of the
predictors, is determined by the distance from the winning
predictor to the other predictors:

(3)

where i is the predictor to be updated, j is the winning pre-
dictor, di,j is the neighborhood distance from predictor i to
predictor j, and σ is an annealing parameter which controls
the neighborhood width. This results in the model shown
in Figure 1. The signal flow graph is shown for only one
predictor.

In exact analogy with training a Kohonen map, both
the neighborhood width and the global learning rate are
annealed during training according to an exponentially
decreasing schedule:

 and (4)

where τ is the annealing rate. The overall learning rate for
the ith predictor is thus given by:

(5)

2.1 Simulation

In order to better understand the algorithm, we used linear
predictors trained with the normalized LMS algorithm [1]
for the following simulation. For viewing convenience, we
used a one dimensional continuous map, where the last

winner t() arg mini εi t()[]=

εi t() λei
2 t() 1 λ−() εi t 1−()+=

λ 1−

gi t() e

d2
i j, t()

2σ2 t()
−

=

σ t() σ0e

t−
τ= µ t() µ0e

t−
τ=

ηi t() µ t() gi t()⋅=

TEMPORAL SELF-ORGANIZATION THROUGH COMPETITIVE
PREDICTION

Craig L. Fancourt and Jose C. Principe

Computational NeuroEngineering Lab
Dept. of Electrical Engineering, University of Florida, Gainesville, FL 32611

fancourt@cnel.ufl.edu

node is mapped as a neighbor to the first node. Training
was conducted for 50 passes through the entire time series,
using an annealing rate of τ = 5 passes.

The example is a switching FIR process. The time
series consisted of zero mean Gaussian noise of unit vari-
ance filtered by a 6th order normalized FIR filter, whose
coefficients are random and change every 200 samples.
The time series, which consists of a total of 8 stationary
regions, is shown in Fig. 2a.

For the predictors, we used eight 8th order predictors.
The memory depth of the error was 25 samples. The initial
neighborhood and learning rate were 16 and 1, respec-
tively. The winning predictors after training are shown in
Fig. 2b.

Figure 2: Switching FIR process: a) time series, b)
winning predictors after training.

 The time series was fairly successfully segmented, except
for a longer than expected winning run for predictor 8, and

0 200 400 600 800 1000 1200 1400 1600
4

2

0

2

4

0 200 400 600 800 1000 1200 1400 1600
0

2

4

6

8

(a)

(b)

minor switching errors near samples 200 and 475. Those
latter errors correlate well with outliers in the time series,
which temporarily degrades the performance of the win-
ning predictor. However, in both cases, recovery occurred
rapidly.

From the FIR coefficients that produced the series, we
can define a similarity coefficient, which is tabulated in
Table 1:

. (6)

Region I refers to samples 1-200, region II refers to sam-
ples 201-400, and so on. Using this metric, the two regions
with the highest similarity (0.86) were sample regions 1-
200 and 601-800. From the neighborhood map, we indeed
find that neighboring predictors 6 and 7 won those regions.
Likewise, the two regions with the second highest similar-
ity (0.79) were sample regions 601-800 and 801-1000,

Table 1: Distance between the eight stationary regions

Reg-
ion I II III IV V VI VII VIII

I 1

II .38 1

III .36 .61 1

IV .86 .51 .40 1

V .75 .23 .17 .79 1

VI .07 .38 .03 .40 .59 1

VII .25 .46 .63 .25 .38 .42 1

VIII .65 .59 .69 .43 .39 .01 .57 1

θi j,cos Wi Wj⋅=

ei ei
2

1−λ

()2

Neighborhood Update Map Competitive Map

Memory

di,j

Winner

εi
2

Error Power

ii

j

+

j

λHi(z)

x(n)

z+1

+

-

Figure 1: Neighborhood map of competitive predictors.

won by neighboring predictors 7 and 8. Alternatively, we
find that the two regions the most dissimilar (0.01) were
sample regions 1001-1200 and 1401-1600. Indeed, the
winners of those two regions are predictors 1 and 5, as far
apart as the map will allow. Overall, there is a very high
correlation between the similarity of two regions and their
distance on the neighborhood map.

3. SELF-ANNEALING COMPETITIVE
PREDICTION

In the ACE algorithm [3], memory is used in the gating
function only. Here we propose a cost function that imbeds
memory in the error measure:

(7)

where εi is the recursive estimate of the mean square error

of the ith predictor from (2). Furthermore, in the ACE
algorithm, the degree of competition, as expressed through
the annealing parameter, and the memory depth of the
squared error are uncoupled. And yet, it is intuitive that the
longer the time period over which we collect information
about the performance of the experts, the better should be
our judgement about which expert is valid. Such a cou-
pling eliminates the need for separate annealing of the
memory depth and the competition. Niedzwiecki [6] has in
fact formulated such a relationship. Assuming that the
variances of the errors of the experts are unknown but dis-
tributed according to a so-called noninformative prior dis-
tribution, Niedzwiecki’s formula for the probability of the
ith expert is given by

, (8)

, (9)

. (10)

M is the memory depth in samples. Equation (9) embodies
the coupling between memory depth and degree of compe-
tition. We have borrowed Niedzwiecki’s result and incor-
porated it into our gating function. We use (8) as the gating
function, except that we replace the moving average calcu-
lation of the mean square average in (10) by our recursive
calculation in (2). Likewise, we replace the memory depth,

M, in (9) by the recursive parameter .

. (11)

We then do gradient descent on both the calculated gate

E t() gi t() εi t()
i 1=

K

∑=

gi t()
ϕi t()

ϕj t()
j 1=

K

∑
=

ϕi t() εi t()[]
M−
2=

εi t()
1
M

ei
2 t m−()

m 0=

M 1−

∑=

λ 1−

ϕi t() εi t()[]
1−

2λ=

and the mean square errors of (7). Taking the partial deriv-
ative with respect to any free parameter, wk, in the kth sys-
tem, results in the following sets of equations

, (12)

, (13)

and with respect to the λ parameter:

(14)

. (15)

Equation (13) for zk is the standard weight update equation

with momentum for the kth expert operating indepen-
dently. Thus, momentum learning which has been previ-
ously presented as an ad-hoc way to speed up and stabilize
neural network training, falls out naturally as a result of
using the mean square error in the cost function (7) instead
of the instantaneous error.

The competitive nature of the algorithm is evident in
(12), where the total weight update is given by the product
of zk with the probability of the kth expert, gk, and another
term which depends on the inverse of the mean square
error of the kth expert. Thus, the expert with the smallest
mean square error will have the largest weight update. Fur-
thermore, (12) also shows how the annealing is coupled
with the memory depth. For λ>0.5, the term in brackets is
always positive, and thus all the experts move towards the
data to improve their predictions. However, For λ<0.5, the
sign of the term in brackets can be either positive or nega-
tive, depending on whether the mean square error of the
kth predictor is less or greater than, respectively, the total
cost. Thus, experts that perform poorly can actually be
pushed away from the data, although at a small learning
rate due to the gating function.

3.1 Simulation

To test the algorithm, we used the same switching FIR
process as in the previous simulation. We also used the
same number and type of predictors. The initial value of λ
was 1, and after 30 iterations, it had evolved to a value of
0.6, corresponding to a memory depth of ~1.6 samples.
The winning predictors after training are shown in Fig. 3b.

The time series was partially segmented, except there
is more spurious switching than there was for the Neigh-
borhood Map of Predictors. This is because λ did not
adapt to a small enough value to invoke hard competition,
whereas in the previous algorithm, it was experimentally
set to a value which gave a stable segmentation. Still, the

∆wk η
wk∂
∂ E t()− ηg− k

E t()
εk t()

2λ 1−+ zk t()= =

zk t() ek t()
wk∂
∂ yk t() 1 λ−() zk t 1−()+=

∆λ
η−

2λ
gi

E
εi

2λ 1−+() vi t()
E εi−[] εi t()log

λ
−

i 1=

K

∑=

vi t()
εi t() εi t 1−()−

λ
1 λ−() vi t 1−()+=

results are encouraging.

Figure 3: Switching FIR process: a) time series, b)
winning predictors after training.

4. CONCLUSIONS

We have taken the concept of self-organization in space
and extended to time series through a front end of dynamic
models trained as (linear or nonlinear) predictors. The
individual predictors compete for the input data on the
basis of their error performance in the recent past. The
winner is granted the largest parameter update, and others
are granted smaller updates on the basis of their distance
from the winner. Annealing of the map is achieved in exact
analogy to Kohonen learning. After training, observation
of the winning predictors segments the time series accord-
ing to stationary regions, and “similar” stationary regions
are mapped as neighbors in the predictor map. Using this
algorithm, we successfully segmented and identified dif-
ferent time series.

We then proposed a new cost function that imbeds the
mean square error which, when computed recursively,
leads naturally to momentum learning. We also coupled
the memory depth of the mean square error with the
degree of competition such that the system can autono-
mously adapt the memory depth for the problem at hand.
Simulation revealed that the model does indeed self-orga-
nize, but the segmentation was not as hard as when the
memory depth was determined experimentally.

Experiments are being conducted to validate the mod-
els for speech recognition and time series analysis.

Acknowledgments: This work was partially supported by
ARPA/ONR grant N00014-94-1-0858 and NSF grant
ECS-9510715.

(a)

(b)

0 200 400 600 800 1000 1200 1400 1600
4

2

0

2

4

0 200 400 600 800 1000 1200 1400 1600
0

2

4

6

8

10

References

[1] Fancourt C., and Principe J., A Neighborhood Map of
Competing One Step Predictors for Piecewise
Segmentation and Identification of Time Series, ICNN
96 , vol. 4, pp. 1906-1911, 1996.

[2] Jacobs R.A., Jordan M.I., Nowlan S.J., and Hinton
G.E., Adaptive mixtures of local experts, Neural
Computation, vol. 3, pp. 79-87, 1991.

[3] Kohlmorgen J., Muller K.-R., and Pawelzik K.,
Improving short-term prediction with competing
experts, ICANN'95: Proc. of the Int. Conf. on Artificial
Neural Networks, EC2 & Cie, Paris, 2:215-220, 1995

[4] Kohonen T., Self-organized formation of topologically
correct feature maps, Biological Cybernetics, vol. 43,
pp. 59-69, 1982.

[5] Muller K.R., Kohlmorgen J., and Pawelzik K.,
Analysis of Switching Dynamics with Competing
Neural Networks, IEICE Transactions on
Fundamentals of Electronics, Communications and
Computer Sciences, in press, 1995

[6] Niedzwiecki M., Multiple Model Approach to Finite
Memory Adaptive Filtering, IEEE Transactions on
Signal Processing, vol. 40, no. 2, pp. 470-473, 1992.

[7] Pawelzik K., Kohlmorgen J., and Muller K.R.,
Annealed Competition of Experts for a Segmentation
and Classification of Switching Dynamics, Neural
Computation, 8, pp. 340-356, 1996.

[8] Weigend A.S., Mangeas M., and Srivastava A.N.,
Nonlinear gated experts for time series: discovering
regimes and avoiding overfitting, International Journal
of Neural Systems, Vol. 6, No. 4, 1995.

[9] Widrow B., and Stearns S.D., Adaptive Signal
Processing, Englewood Cliffs, NJ: Prentice-Hall, 1985.

