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ABSTRACT winner(f) = argmin; [e, (t)] (2)

Two self-organizing principles for the competitive identifi-  where the memory of the squared error is computed using
cation and segmentation of piecewise stationary time an exponentially decaying window,

series are described. In the first, a neighborhood map of

one step predictors competes for the data during training. g (1) = Aeiz(t) +(1-Neg (t-1), (2)

The winner is granted the largest parameter update, while

other predictors are allowed smaller updates, decreasing whereg; is the instantaneous squared error of there-

with distance from the winner on the neighborhood map. dictor andA is the memory term (O<1). The effective

In addition to performing piecewise segmentation and memory depth, in number of samples, can be shown to be
identification, the techniqgue maps similar segments of the AL, We will show later how to adapt the memory depth,

time series as neighbors on the neighborhood map. In the but for th it ted. th timal depth

second, we propose a new cost function for competitive ut for the reSl: ﬁ' pc:etsen(_a ,d fe opt;]mat_ memory ﬁ%

prediction that imbeds memory in the error metric and V&S €xpermentally determinéd Irom the ime series. 1ne
gating function, which moderates the learning rate of the

couples the memory with the degree of competition. Per- dict is determined bv the dist f the winni
forming gradient descent on the cost function yields a self- preaictors, IS determined by e. IStance from the winning
predictor to the other predictors:

annealing system that can also perform piecewise segmen-
tation and identification of a time series. odi g

u 20'2 (t) u (3)

1. INTRODUCTION gi(t) =e

Many real world signals are created by systems that have WN€rel is the predictor to be updatgds the winning pre-
timeyvarying parar%eters (i.e. speech)y. I% such cases andictor.d;; is the neighborhood distance from predictar
important engineering problem is to find regions where the Predictorj, ando is an annealing parameter which controls
signal properties are reasonably constant before attempt- the neighborhood width. This results in the model shown
ing further block oriented signal processing (such as spec- in Figure 1. The signal flow graph is shown for only one
tral analysis). Conventional signal processing schemes for Predictor. _ o
segmentation have not produced good results. Pavelzik In exact analogy with training a Kohonen map, both
al. [7] have recently proposed an architecture for segmen- the neighborhood width and the global learning rate are
tation called the Annealed Competition of Experts (ACE). annealed during training according to an exponentially
An alternative is based on the Mixture of Experts [2], decreasing schedule:
called Non-linear Gated Experts [8]. These two algorithms —t —t
both employ a set of expert predictors, but differ in their
implementation of the gate, which assesses which expert is 0
valid at each time step. Here we describe two algorithms yherer is the annealing rate. The overall learning rate for
for identification and segmentation where the gate is the th predictor is th . by:
dependent on both the input and output, through the error. € I predictor1s thus given by:

n; (1) = p(t) 0o (v (5)

o(t) = o e’ and u(t) = pe' 4)

2. NEIGHBORHOOD MAP OF PREDICTORS

Our implementation [1] is shown in Figure 1. A set of pre- 2.1 Simulation
dictors works in parallel in the input time series. The win-
ning predictor is the one with the smallest composite
squared error:

In order to better understand the algorithm, we used linear
predictors trained with the normalized LMS algorithm [1]
for the following simulation. For viewing convenience, we
used a one dimensional continuous map, where the last
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Figure 1: Neighborhood map of competitive predictors.

node is mapped as a neighbor to the first node. Training minor switching errors near samples 200 and 475. Those
was conducted for 50 passes through the entire time series,latter errors correlate well with outliers in the time series,
using an annealing rate oE 5 passes. which temporarily degrades the performance of the win-
The example is a switching FIR process. The time ning predictor. However, in both cases, recovery occurred
series consisted of zero mean Gaussian noise of unit vari- rapidly.
ance filtered by a 6th order normalized FIR filter, whose From the FIR coefficients that produced the series, we
coefficients are random and change every 200 samples.can define a similarity coefficient, which is tabulated in
The time series, which consists of a total of 8 stationary Table 1:
regions, is shown in Fig. 2a.
For the predictors, we used eight 8th order predictors.
The memory depth of the error was 25 samples. The initial

neighborhooq a_nd 'ea”_“”g rate were 16 and 1, 'eSPEC-  Taple 1: Distance between the eight stationary regions
tively. The winning predictors after training are shown in

cos8; || = [W, LW (6)

Fig. 2b.
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Fi 5 itchi (I?I)R N ies. b ples 201-400, and so on. Using this metric, the two regions
Igure Wlﬁx‘:ﬁc ”:gdictorpsr%?t?asrst'r;%ithme series, b)  yith the highest similarity (0.86) were sample regions 1-
9p 9. 200 and 601-800. From the neighborhood map, we indeed

find that neighboring predictors 6 and 7 won those regions.

The time series was fairly successfully segmented, except Likewise, the two regions with the second highest similar-
for a longer than expected winning run for predictor 8, and ity (0.79) were sample regions 601-800 and 801-1000,



won by neighboring predictors 7 and 8. Alternatively, we and the mean square errors of (7). Taking the partial deriv-

f|nd that the two regions the most dissimilar (001) were ative W|th respect to any free paramm%’in the l{h Sys_

sample regions 1001-1200 and 1401-1600. Indeed, the tem, results in the following sets of equations

winners of those two regions are predictors 1 and 5, as far '

apart as the map will allow. Overall, there is a very high 3 E (1)

correlation between the similarity of two regions and their AWk = ‘”aTVkE(t) = ~NYy [m +2A- 1] 71, (12)

distance on the neighborhood map. k
(1) = e (1) %yk(t) +(1-Nz (t-1), (13)

3. SELF-ANNEALING COMPETITIVE k

PREDICTION and with respect to theparameter:
In the ACE algorithm [3], memory is used in the gating

function only. Here we propose a cost function that imbeds -n X E [E-¢]loge, (1)
memory in the error measure: BA=235 [(g F2A-Dvi (O - f}(l“)
i=1 [
K
= . g (t) —g(t-1)
E(1) 'Zlgl (t) & (1) (7) v, () = % +(1-A)v (t-1). (15)
i=

whereg; is the recursive estimate of the mean square error Equation (13) fog, is the standard weight update equation

of the {h predictor from (2). Furthermore, in the ACE  with momentum for the R expert operating indepen-
algorithm, the degree of competition, as expressed through dently. Thus, momentum learning which has been previ-
the annealing parameter, and the memory depth of the ously presented as an ad-hoc way to speed up and stabilize
squared error are uncoupled. And yet, it is intuitive that the neural network training, falls out naturally as a result of
longer the time period over which we collect information using the mean square error in the cost function (7) instead
about the performance of the experts, the better should be of the instantaneous error.

our judgement about which expert is valid. Such a cou- The competitive nature of the algorithm is evident in
pling eliminates the need for separate annealing of the (12), where the total weight update is given by the product
memory depth and the competition. Niedzwiecki [6] has in  of z with the probability of the 'R expert,gy, and another

fac; formulated such a relationship. Assuming that th_e term which depends on the inverse of the mean square
variances of the errors of the experts are unknown but dis- .
error of the K expert. Thus, the expert with the smallest

tributed according to a so-called noninformative prior dis- ; ;

tribution, Niedzwiecki's formula for the probability of the ~ Mean square error will have the largest weight update. Fur-
th o b thermore, (12) also shows how the annealing is coupled
I expert Is given by with the memory depth. Far>0.5, the term in brackets is

o (t) always positive, and thus all the experts move towards the
g () = (8) data to improve their predictions. However, Kkeg0.5, the
o (1 sign of the term in brackets can be either positive or nega-
'Zl i tive, depending on whether the mean square error of the
_ kth predictor is less or greater than, respectively, the total

™ cost. Thus, experts that perform poorly can actually be

0. () = [g(D] 2, 9) pushed away from the data, although at a small learning

M1 rate due to the gating function.

1
M =5 Y e (t-m). (10)
m=0 3.1 Simulation

M is the memory depth in samples. Equation (9) embodies T4 test the algorithm, we used the same switching FIR
the coupling between memory depth and degree of compe- nrgcess as in the previous simulation. We also used the
tition. We have borrowed Niedzwiecki’s result and incor-  same number and type of predictors. The initial value of
porated it into our gating function. We use (8) as the gating \yas 1, and after 30 iterations, it had evolved to a value of
function, except that we replace the moving average calcu- 0.6, corresponding to a memory depth of ~1.6 samples.
lation of the mean square average in (10) by our recursive The winning predictors after training are shown in Fig. 3b.
calculation in (2). Likewise, we replace the memory depth, The time series was partially segmented, except there
M, in (9) by the recursive parameter* . is more spurious switching than there was for the Neigh-
borhood Map of Predictors. This is becausalid not

—= adapt to a small enough value to invoke hard competition,
o, () = [& (D] (11) whereas in the previous algorithm, it was experimentally
set to a value which gave a stable segmentation. Still, the

-1

We then do gradient descent bath the calculated gate



results are encouraging. References
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mean square error which, when computed recursively,

leads naturally to momentum learning. We also coupled

the memory depth of the mean square error with the

degree of competition such that the system can autono-

mously adapt the memory depth for the problem at hand.

Simulation revealed that the model does indeed self-orga-

nize, but the segmentation was not as hard as when the

memory depth was determined experimentally.
Experiments are being conducted to validate the mod-

els for speech recognition and time series analysis.
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