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ABSTRACT

We propose a nonlinear self-organising network which
solely employs computationally simple hebbian and anti-
hebbian learning in approximating a linear independent
component analysis (ICA). Current neural architectures and
algorithms which perform parallel ICA are either restricted
to positively kurtotic data distributions [1] or data which
exhibits one sign of kurtosis [2, 3, 12]. We show that the
proposed network is capable of separating mixtures of
speech, noise and signals with both platykurtic (positive
kurtosis) and leptokurtic (negative kurtosis) distributions in
a blind manner. A simulation is reported which successfully
separates a mixture of twenty sources of music, speech,
noise and fundamental frequencies.

1. INTRODUCTION

The blind signal separation problem has received
considerable attention from both the signal processing and
neural network communities in recent years. The motivation
behind this activity is to solve the practical problem of
identifying and separating individual original source signals
from a received mixture within a multi-source and multi-
sensor environment. The problem is further compounded as
no a priori knowledge of the direct and cross coupling
transfer paths can be assumed.

Algorithms have been developed based on information
theoretic criteria and higher order statistics; if a signal has
independent components then the product of the marginal
probability densities is equal to the signal probability
density. Using the Kullback-Leibler divergence as a
measure of independence, Comon [4] develops a series of
contrast functions based on an Edgeworth expansion of the
marginal densities and batch methods are used in their
maximisation.
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Jutten and Herrault [5] were the first to develop a neural
architecture and learning algorithm for blind separation;
since then a number of variants on this architecture have
appeared in the literature, Amari et al  [6]. Bell and
Sejnowski [1] developed a feedforward network and
learning rule which minimises the mutual information at the
output nodes; this yields excellent results for platykurtic
signals such as speech, however, the algorithm is developed
from a noise free model. The matrix inversion required is a
computational bottleneck and unrealistic from a DSP
implementation viewpoint. The simple multiply and
accumulate operations of hebbian and anti-hebbian learning
are attractive for DSP hardware implementations. Karhunen
et al [2, 3]   develop a number of nonlinear variants of
principal component analysis (PCA) learning and
demonstrate ICA performed on data such as natural images.
The recently developed Bigradient algorithm [9] can deal
with both leptokurtic and platykurtic data, the restriction of
source signals which have kurtosis of the same sign is still
required. Hyvarinen and Oja [7] have recently developed
single neuron models for source extraction. Karhunen and
Pajunen [8] have reported on the use of hierarchical [14]
and transitional learning (from nonlinear to robust PCA
learning) in separating mixtures of sources of varying
kurtosis sign.

2. NETWORK ARCHITECTURE AND LEARNING

We consider the same signal model as in Adaptive Noise
Cancellation (ANC) where the noise source is considered as
a signal component. This assumes an a priori knowledge of
the number of noise sources; for this work we shall adopt
this particular assumption. We shall only consider
instantaneous mixing here, however, we have reported on
separation of convolved mixtures of signals in [10] for
strictly causal minimum phase systems.

Figure 1 shows the network topology, the network is based
around an exploratory projection pursuit network, Fyfe and
Baddeley [11] utilise a nonlinear network with negative



feedback of activation to perform exploratory projection pursuit
(EPP). Girolami and Fyfe [12], explored the use of  an EPP
network for separation of speech sources it was found that the
choice of nonlinearity was crucial for the quality of separation,
and that utilising symmetric local learning did not guarantee
uniqueness of the outputs.

Figure 1 : The EEPP Network with lateral connections.

Consider M zero mean source signals s mixed by the unknown
linear matrix A the received signals are then, in matrix format,
x=As. The output of the first layer of neurons is given as z, and
so with the linear lateral connections at the input  

[ ]z I U x U xI= + ≡                         (1)

The first layer of neurons are used to decorrelate the incoming
data, and so give an identity covariance matrix for the output of
the layer. This decorrelation is sometimes referred to as
sphereing or whitening [2, 3, 11] and is an essential pre-
requisite for the learning of the output neurons. The learning
rule (2) will provide whitened output data      

( )∆U I zzT= −α       (2)

If ( )∆U I C C Izz zz= − → ⇒ →α 0  where Czz is the

covariance matrix of z. The z values are fed forward through the
W weights to the output neurons where there is a second layer
of lateral weights. However before the activation is passed
through this layer it is passed back to the originating z values in
a hierarchical manner [8,14] as inhibition and then a nonlinear
function of the inputs is calculated. The linear weighted sum

value at the output neuron is given as    act W U AsI= T

(3) and the associated residuals are given, in vector format, as

r z act wi j
j

i
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The output neurons are nonlinear and a nonlinear functional is
applied to the weighted sum. The outputs also have lateral
connections to the nonlinear output neurons and so the output is
defined in matrix format as    

( )y V
I

act= f                                    (5)

Simple hebbian learning is used to update the  feedforward
weight values we can write this in vector notation as 

∆w ri i iy= β                           (6)

and so [ ]( )∆W zy W act y= − × ×β  upperT T            (7)

Where the upper[ .] operator sets the matrix argument upper
triangular.

Similarly, anti-hebbian learning is applied at the output as at the

input ( )∆V I yy= −γ  T                       (8)

It has been shown [11, 14] that (7) is an approximative
stochastic algorithm which will maximise the integral of the
neuron activation function  that is ( )f act∫  , under orthonormal

constraints. With the addition of (8) we have a further constraint
to the feedforward learning that is

If ( )∆V I C C Iyy yy= − → ⇒ →α 0

As the neuron output is nonlinear, we will have higher order
moments generated and as such (8) will provide a higher order
decorrelation constraint. Consider the simple case of

( )V
I

act actf∫ = −4 3   which in the expectation will be

act4

43− = κ is the fourth order sample cumulant for zero

mean and unit variance data. Also

∆V C Iyy→ ⇒ →0 ⇒ + →act act act acti j i j

3 3 0 so

we are effectively maximising the sum of fourth order
cumulants under the constraints that the rotation is orthogonal
and the sum of the fourth order cross cumulants is minimised. If
all the sources have strictly positive or strictly negative kurtosis,
which is the normalised fourth order cumulant,  we then have an
equivalence for
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This is the contrast for ICA developed by Comon; as Comon
uses the square of the cumulant terms the sign of the individual
source kurtosis is unimportant. It is noted that the sum of
squares of fourth order cumulants is invariant under linear

orthogonal rotation and so ( )
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will by

implication minimise the sum of squares of cross cumulants.
This is maximised if the kurtosis of each individual output is
extremised. So if we consider pairwise outputs the joint density
of both distributions is then approximately
factorable, ( ) ( ) ( )p p ps ss u u u u1 2 1 1 2 2, = . To ensure that

kurtosis extrema occurs at each output we have proposed an
adaptive nonlinearity which will respond to the kurtosis of the
neuron input, this is given as

( ) ( ) ( ) ( )f act act sign acti i s i= −β κ ( ) tanh4          (9)

A detailed analysis of this form of nonlinearity is given in
[13] consider a positively kurtotic, zero mean and unit
variance neuron input u, then , using a truncated Taylor

expansion ( ){ } ( ){ }E f u E u u= − tanh

{ } { }= − − +E u E u u u3 53 2 15 { }≅ E u3 3 which with (7)

and (8) will maximise the individual kurtosis as
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{ }E u2 1≅ . The same argument is applied to negatively

kurtotic data so ( ){ } { }E f u E u≅ − 3 3 and the orthogonal

rotation will minimise the data kurtosis. In keeping with the
‘blind’ form of the proposed separation we adopt the online
kurtosis estimation, proposed by Hyvarinen and Oja [7] that is

( )[ ] ( )[ ] ( )[ ] ( ) ( )� �m u t t m u t t u tp i p i i
p+ = − +1 1 η η               (10)
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(10) estimates online the pth order moments of the data, ( )η t is

a small learning constant. (11) is an estimate of the kurtosis for
zero mean data. We can then use the adaptive nonlinearity

( )[ ] ( ) ( )[ ]
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         (12)

The linear hebbian learning at the input diagonalises the input
covariance matrix. The nonlinear hebbian and anti hebbian
learning of the forward and output section rotate the output to
extremise the individual output kurtosis, and minimise the
output cross moments thus performing an approximation to
linear independent component analysis. The lateral connections
and asymmetric feedback, along with the adaptive nonlinearity
(12) removes the restriction of uniformity of kurtosis and
increases the scalability of the network. It should be noted that
the single neuron models developed by Hyvarinen and Oja [7]
allow sequential extraction of sources with arbitrary non-
gaussian pdf.

3. SIMULATIONS

Twenty sources were mixed using a 20 x 20 mixing matrix
whose elements were randomly drawn from a uniform
distribution in the range -1 ... +1. The twenty sources1 included
five second samples of music, speech, noise and fundamental
tones. Figure 2.b shows the initial sources and their kurtosis
values, the kurtosis values of the mixtures is given in the
adjacent column. We note that these mixtures now have almost
gaussian histograms, and small kurtosis. The final column
shows the extracted sources and the output neurons  (identified
as a - t) at which they appeared. The value of the extracted
signals kurtosis is listed, along with a numeric value of the
signal to noise ratio (SNR). This SNR is calculated as follows

SNR =
MSE

Varj

−








10log ij where MSEij is the mean square

error of the normalised output i and the corresponding source j,
with variance Varj .

   1The authors are grateful to Prof. B.Pearlmutter for making his source
data available  at http://phlegm.ucsd.edu/~bap/demos.html
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(a)
  Source         K4     Mixture   K4       Output    K4       SNR (dB)
  Music_01      2.48          1     -0.16          n      2.38      36.08
  Music_02      0.96          2     -0.38          p      0.70      16.48
  Music_03      2.53          3     -0.48          t      2.48      46.95
  Music_04      1.47          4     -0.31          j      1.17      21.32
  Music_05      2.74          5     -0.59          e      2.75      45.19
  Music_06      1.16          6     -0.20          k      1.15      45.57
  Music_07      0.73          7     -0.42          s      0.72      47.95
  Noise_08     -1.17          8     -0.29          c        -1.16      42.12
  Music_09      1.06          9     -0.30         m      1.06      39.54
  Music_10      2.46        10     -0.32         r          2.45      59.99
  Music_11      4.04        11     -0.25         o         4.02      52.94
  Music_12      0.50        12     -0.47         f      0.47     30.04
  Music_13      1.00        13     -0.31         h      1.00     50.03
  Sine__ 14    -1.49         14    -0.56          b        -1.48     43.33
  Sine__ 15    -1.49         15    -0.53         d         -1.48     40.82
  Music_16     1.71         16     -0.27        g      1.71     58.91
  Music_17     0.94         17     -0.44         l      0.94     46.23
  Noise_18    -1.19         18     -0.19         a         -1.18     37.65
  Music_19     0.45         19     -0.52        q      0.45     25.27
  Music_20     0.56         20     -0.21         I      0.46     18.51
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Figure 2 : (a) Weight and Contrast development, (b) Table
of values, (c) Kurtosis Surface Development.
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Figure 2(a) shows the contrast development
( )Φ = ∑

=
κ 4
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i

i

N

along with the feedforward (W) and output

lateral weights (V), the contrast develops with the evolution of
the feedforward weights. However it is clear that the lateral
weights do not significantly change once the data has been
sphered, due to the orthonormality of the W weights. A final
contrast of 98% original is attained after 150 learning epochs,
the final SNR’s are very high, with only two sitting below
20dB. Figure 2(c) shows the normalised kurtosis development
as a surface, this is plotted against each output and learning
epoch, for perfect kurtosis extrema and hence separation we
seek a horizontal plane, this is almost achieved after 150
epochs. It is also interesting to note the phased attainment of
maximal kurtosis, due to the hierarchic feedback of activation.
Figure 3, shows the original trace of MUSIC_10, mixture 10
and output r normalised, with almost perfect separation
indicated by the 59.9dB SNR.

Original Source Music_10

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 3: Original, Mixture and Extracted Source Trace.

4. CONCLUSIONS

We have developed a self-organising neural network which is
capable of extracting a known number of independent sources
from a mixture with no a priori knowledge of the mixing or the
sources. Novel use of a nonlinearity which responds to the
developing kurtosis of the output neurons allows mixtures of
both sub and super gaussian sources to be separated. The use of
lateral connections at the output and hierarchic feedback
provides a more robust and scalable extraction when
considering large mixtures of sources.
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