
A NEW NEURAL NETWORK STRUCTURE  FOR TEMPORAL SIGNAL PROCESSING

Amir Hussain

Department of Electronic Engineering and Physics,
     University of Paisley, High St., Paisley, PA1 2BE, U.K.

email: huss_ee0@paisley.ac.uk

ABSTRACT
In this paper a new two-layer  linear-in-the-parameters
feedforward network termed the Functionally Expanded Neural
Network (FENN) is presented, together with its design strategy
and learning algorithm. It is essentially a hybrid neural network
incorporating a variety of non-linear basis functions within its
single hidden layer which emulate other universal
approximators employed in the conventional Multi-Layered
Perceptron (MLP), Radial Basis Function (RBF) and Volterra
Neural Networks (VNN).  The FENN’s output error surface is
shown to be uni-modal allowing high speed single run
learning. A simple strategy based on an iterative pruning re-
training scheme coupled with statistical model validation tests
is proposed for pruning the FENN. Both simulated chaotic
(Mackey Glass time series) and real-world noisy, highly non-
stationary (sunspot) time series are used to illustrate  the
superior modeling and prediction performance of the FENN
compared with  other recently reported, more complex  neural
network based predictor models.

1. INTRODUCTION   

     Over the past decade, there has been an increasing  interest
in the use of Artificial Neural Networks (ANNs) for solving
complex real-world problems [1-13].This is mainly due to their
ability to effectively deal with non-linearity, non-stationarity
and non-Gaussianity [1]. The modeling and analysis of  so-
called chaotic processes has also recently attracted the attention
of many researchers [1,4-11]. Deterministic chaos is
characterized by an exponential divergence of nearby
trajectories [7]. Since the problem of time  series prediction is
synonymous  with  modelling of the underlying physical
mechanism responsible for its generation, there are two related
consequences. Firstly, chaos precludes any long-term
predictability since the uncertainty of the prediction increases
exponentially with time. Secondly, on the other hand an
apparently random time series might have been produced by a
deterministic chaotic system and thus be predictable in the
short term. A prediction algorithm for chaotic systems thus has
to capture the short term structure of the time series [6].
   The short-term structure of chaotic behaviour can be
captured by expressing the present value of the chaotic time
series sample, as a function of the previous d values of the time
series:   y(k)  =  f ( y(k-1) , ... , y(k-d)), where  the  vector (y(k-
1)...y(k-d))  lies in the d-dimensional state space [5]. An

efficient method of fitting the non-linear function f(.) is to use a
feed-forward neural network predictor with a single output [5-
8]; the inputs to the network being  the observation vector (y(k-
1)...y(k-d)). In real-world chaotic time-series processes,
intrinsic noise will be present and the task of the predictor will
be to reconstruct  f(.) without modeling the noise.
      Two well known  feedforward ANNs are the Multi-Layered
Perceptron (MLP) and the Radial Basis Function (RBF)
networks, both of which have been shown to be capable of
forming an arbitrarily close approximation to any continuous
non-linear mapping [3]. Consequently, both have to-date been
successfully  employed  for approximating f(.) [1,4-11].
However, the MLP has a  highly non-linear in the parameters
structure, and requires  computationally  expensive non-linear
learning algorithms (such as back-propagation) which may
converge to  local minimum solutions [3]. The RBF network
has a linear in the parameters structure giving relative
advantages of ease of analysis and  rapid learning. However, it
suffers the drawback of requiring a prohibitively large number
of basis functions to cover high dimensional input spaces [7].
       The topology of the RBF can be considered to be very
similar to that of a two-layered MLP. The primary difference
between the two structures is in the nature of their basis
functions. The hidden layer nodes in the MLP employ
sigmoidal type basis functions (which are non-zero over an
infinitely large region of the input space); whereas the basis
functions in the RBF network cover only small localized
regions. Hush [3] has recently shown that some problems, such
as functional approximation can be solved more efficiently
with sigmoidal type basis functions; while others such as
classification problems are more amenable to localized (e.g.
Gaussian type) basis functions.
         This  paper  describes a  new  unified  approach   which
combines both these types of basis functions within a single
neural network layer, so that the  approximating capabilities of
both the MLP and the RBF networks can be employed. The
approach  yields  a new linear-in the-parameters feedforward
neural network termed the Functionally Expanded Neural
Network (FENN). A  general design strategy is  presented  for
specifying the type and number of basis functions within the
network's single hidden layer, for an arbitrary number of
network inputs. The FENN’s output error surface is shown to
be uni-modal allowing high speed single run learning. An
exponentially weighted recursive least squares based  learning
algorithm is employed  for updating its output layer weights. A
simple  strategy based on an iterative pruning-retraining
scheme  coupled  with  statistical model validity tests has been



proposed for pruning the size of the FENN. The new structure
is shown to be highly efficient in the  modeling of both
simulated chaotic, and real world noisy  time-series processes,
and its performance is compared with other recently reported
neural network based predictor models. Two simulation
examples are presented using the chaotic  Mackey-Glass
Equation, and real world sunspot data.

2. THE FENN STRUCTURE

The complete two-layer, multiple-input multiple-output FENN
is shown in Figure 1. It comprises an input  functional
expander within its single hidden layer, and an output layer.
The FENN functional expander performs a non-linear
transformation which maps the n-dimensional  input space onto
a new non-linear hidden space of increased dimension N. The
choice of basis functions to be employed in the functional
expander has been discussed in [2,12] and is summarized in the
design strategy below. The output layer of the (n,M;m)FENN
comprises a set of m linear combiners. It is interesting to note
that the RBF network with fixed non-linear hidden layer basis
functions or centres (and widths) can be regarded as a FENN.
The linear-in-the-parameters Volterra  Neural Network (VNN)
which employs a purely polynomial expansion of its inputs
[12] can also be considered to be a special case of the FENN,
in which  the number of polynomial expansion terms grow
exponentially with increasing input dimensions. The
conventional  Functional-Link Network (FLN) [13] also
resembles the above FENN in terms of employing a
functionally expanded input model. However, the FLN
possesses a non-linear in the parameters structure (as its ouput
layer is essentially a Perceptron requiring the non-linear Delta
learning Rule for its weight updates); and the nature of its
expanded input functions also differ. The functional expansion
model employed in the FENN  is  unique in that it employs a
combination of non-linear basis functions that emulate a
variety of other universal approximators such as the squashing
type sigmoidal, Gaussian bell shaped and polynomial-subset
activation functions. These have been shown to significantly
enhance the approximation ability of the FENN in the
modeling of a very wide class of  non-linear dynamical
processes [2,11].

2.1 Design Strategy

   Expand the input vector [x1(k) ... xn (k)] for any number n of
FENN inputs (all normalized to within the range (+1,-1)),
using the following expansion model:
F(k)= sum of the following (linear and non-linear) N
components:
1. zero-order  term (resulting in 1 dc term).
2. original input terms x1 .... xn (resulting in n terms). These

terms will enable modeling of linear systems.
3. sine expansion of the n inputs, comprising  sin(xi), sin(2xi)

and sin(3xi) terms, for i=1,....,n (resulting in  a total of  3n
terms). These terms emulate squashing type sigmoidal basis
functions.

4. cosine expansion of the n inputs comprising cos(xi),
cos(2xi) and cos(3xi) terms, for i=1,....,n (resulting in a total
of  3n terms). These functions emulate Gaussian like basis
functions of fixed widths.

5. product of each input with the sine and cosine functions of
other  inputs comprising  xi sin(xj)  and   xi cos(xj)  terms
(for  i ≠ j, i,j= 1...,n) giving a total of  2n(n-1)  terms. These
terms emulate multi-quadratic and sigmoidal type functions
respectively

6. outer-product expansion of the n inputs resulting in total of
(P2

 n + P3
 n + , ....,+ Pn-1

 n +1)  terms for n greater than two
inputs, with     Pm

 n = [n! / (n-m)!m!] where ! denotes
factorial. Note that for  n=2  inputs the outer-product
expansion will result in 1 term (x1x2) , and for  n=1  there
will be no outer product terms). These higher order outer-
product terms can be considered to be a polynomial
expansion of the inputs without the  n-th  power of the
inputs [11].

Hence,  in general  for n  inputs, the FENN functional
expansion model F(k) will comprise a total of :
N = (1+ 2n2 + 4n + Σi=1

n Pi
n ) terms.  That is for n=1, N=8 ;

n=2, N=20 ; n=3, N=38 ;  n=4, N=64 and so on. Note that the
functional expansion model of the FENN is extremely flexible
since  virtually  any function of the input such as tanh(.),
exp(.), etc. can also be employed. In practice, physical
knowledge of the non-linear system to be  identified  can also
be incorporated within the input functional expansion model. If
no a priori system knowledge is available, the FENN
approximation can be further improved by addition of higher
order polynomial terms from the  Volterra series expansion in
the input functional expansion model. Thus, the overall FENN
structure can be seen to possess non-linear approximation
ability by virtue of the input non-linear functional expander,
and yet learning of its output layer weights is a linear problem.
It is this latter characteristic of the FENN that provides the real
motivation for exploiting its use in complex real-world non-
linear dynamical system modeling applications.

2.2 Learning Algorithm    

(1) Compute the i= 1,...,m FENN outputs at time k, as
               yi (k) = FT (k) Wi (k-1)
where F(k) defines the [Nx1] hidden layer vector comprising
the non-linear functional terms, and  Wi (k-1) is the [Nx1]
weight vector of the i-th output.
(2) The output prediction error for each FENN output is:
                ei(k) = di (k) - yi (k)
where di (k)  is the i-th desired output.  The Mean Squared
Error (MSE) is therefore:
E(ei(k)2) = E(di(k)2) - 2Wi(k-1)T E(di(k)F(k) )
                                       + Wi(k-1)T E(F(k)F(k)T ) Wi(k-1)
where E(.) denotes the expectation operator and T denotes
matrix transpose. The corresponding minimum MSE  (MMSE)
for the FENN can thus be readily written as:
 MMSE = E(di(k)2) - E(di(k)F(k))T E(F(k)F(k)T )-1E(di(k)F(k))
where superscript -1 denotes matrix inverse. The above MMSE
also includes the best linear (Wiener) MMSE for the case of
F(k)=input vector [x1(k) ... xn (k)], that is, only linear functions
of the inputs. The advantage of this particular  FENN structure
is that linear adaptive filter theory can be readily applied for
on-line adaptation.
    The quadratic form of the MSE expression above with
respect to the FENN weights ensures that there will be no local
minima and so fast and certain convergence may be obtained in
practice. The FENN weights, for each of the m outputs, can be



updated  using the exponentially weighted Recursive Least
Squares (RLS) algorithm as follows:
(3) Update the inverse of the correlation matrix of the input
functional expansion vector:
 P(k) = [F(k)F(k)T]-1 = 1/λ [ P(k-1)
                    - P(k-1)F(k)F(k)TP(k-1)/{λ+F(k)TP(k-1)F(k)} ]
where  λ is the forgetting factor  ( ≤ 1), which introduces
exponential weighting into past data.
(4) Update the output layer weights using:
         Wi(k) = Wi(k-1) + P(k) F(k) ei(k)      for   i=1,...,m
Numerically robust versions of the RLS can be used instead of
the above. The simpler Least Mean Squares (LMS)  algorithm
which is a stochastic gradient  algorithm can also be used for
updating the output layer weights as follows:
                       Wi(k)=Wi(k-1) + µ ei(k)F(k)
where µ controls the convergence rate. However, the rate of
convergence of the LMS algorithm is  dependent  on the spread
of the eigenvalues of the input expansion model's
autocorrelation matrix, E(F(k)F(k)T), with an increase in
eigenvalue spread dictating a slower convergence rate  [11].
The RLS algorithm   will converge more rapidly but at the
expense of an increased computational complexity, O(N2)
compared to O(N). Other Fast RLS (FRLS) algorithms of
reduced complexity can also be readily applied to train the
above FENN.
         Thus, once the full  expansion model at the input hidden
layer of the FENN has been specified, the exponentially
weighted RLS algorithm can then be used to provide an
efficient means for real time adaptation of the network weights.
This will give the FENN a significant  advantage over the
multi-layered neural network structures such as the MLP in
recursive identification applications.

3. SIMULATION RESULTS

3.1 Modeling of Real Sunspots

Following Tong [9], Weigend [7], Svaver [10] and McDonnel
[8], a (2,20;1)FENN was trained on the annual sunspot series
for the years 1700-1920. The  two FENN inputs having been
normalized to within (+1,-1) were expanded into twenty
functional terms. The  FENN was pruned by employing an
iterative pruning re-training scheme to successively remove the
insignificant basis functions.  Output error auto-correlation and
Chi-squared statistic based model validation tests [11,14] were
employed at each stage in order to validate the pruned FENN
model over the training set. The pruned  and trained
(2,14;1)FENN one-step predictor model of the sunspot series
which satisfied all the correlation and chi-squared  model
validity tests [11] is illustrated below:
�y (k) = y(k-1) +1.16y(k-2) +1.23sin(y(k-2)) -

     2.1sin(2y(k-1)) +1.98sin(2y(k-2))-1.14cos(y(k-2))
     -1.5cos(2y(k-1))+1.54sin(3y(k-1))-1.1sin(3y(k-2))
     -0.66y(k-1)sin(y(k-2)) - 0.11y(k-1)cos(y(k-2))
   -2.78y(k-2)sin(y(k-1))-3.8y(k-2)cos(y(k-1)) + 2.7       (3.1)

where �y (k)  is the one-step FENN prediction of  the current

sunspot sample y(k), based on  the previous two sunspot  time
series samples [y(k-1) y(k-2)]. The one-step predictions of the
above evolved (2,14;1)FENN predictor model were evaluated
on the sunspot series for test years 1956-1979 (which are

known to be atypical of the entire time series [8], and most
difficult to predict on account of their highly non-stationary
nature), in order to test its generalization ability.  The average
relative variance (arv) [8] (defined as the ratio of the Mean
Squared Error to the estimated variance) achieved by the
FENN one-step predictor model is compared in Table 1 with
other published results. The TAR denotes a Threshold Auto-
Regressive Model, and SLP represents a Single-Layered  IIR
type Perceptron. As can be seen from Table 1, the new FENN
model outperforms the other techniques both in terms of
prediction ability and relative computational requirements. An
examination of the FENN predictor model (equation 3.1
above)  also reveals  the respective contributions of the various
proposed non-linear basis functions which are primarily
responsible for the superior FENN performance over the other
more complex neural network models (all of which required
information from at least the previous 5 sunspot samples).

  Model FENN TAR [9] MLP [7] MLP [10] SLP [8]
Inputs     2     8    12     5      6
No. of
Parametr.

    14    16   43    16     23

arv(1956-
1979)

  0.18  0.28   0.35   0.35   0.37

 Table 1: Performance comparison of  various single step
predictor models on the sunspot  test data.

3.2 Modeling  of simulated chaotic  Mackey  Glass Equation:

One thousand  samples were generated using the following
Mackey Glass equation [8]:  
           d ( y ( k ) )   =      0.2   y ( k - 30 )   -  0.1 y ( k )
               d ( k )             1 + y 10 ( k - 30 )
A one-step predictor model based on a fully expanded
(2,20;1)FENN was devised and trained on the first 500
samples.  The fully expanded model was then pruned
iteratively to yield a  (2,4;1)FENN predictor model:

 �y (k)  = 1.99y(k-1) - 0.88sin(y(k-2)) +0.74y(k-1)sin(y(k-2))

                  +  0.05y(k-2)sin(y(k-1))                                  (3.2)
 The arv  performance measure achieved by the above FENN
one-step predictor on the subsequent 500 sample Mackey Glass
test data is compared in Table 2  with that reported by
McDonnel [8], who used  a 17-term recurrent one-step
predictor model  that   evolved from a parent Recurrent IIR
Perceptron after five  thousand generations of an optimisation
process incorporating a computationally expensive, complex
multi-agent stochastic search technique. As can be seen from
Table 2,  the 4-term FENN predictor model of equation  3.2
comprising a weighted linear term, a non-linear  sigmoidal
shaped  term, and 2 multi-quadratic shaped terms outperforms
the more complex recurrent predictor model reported in [8].

Model FENN IIR Perceptron [9]
 arv (1-step

  predictions)
  0.0012

(comprising
 4 parameters)

 0.0025
(comprising

 17 parameters)
  arv (2-step
  predictions)

     0.0016
(7 parameters)

     0.0070
(17 parameters)

    Table 2:  arv performance comparison of one-step and two
step non-linear predictor models  on  a 500 sample test set.



A (2,20;1)FENN two-step ahead predictor model was also
devised  and  trained on the same 500 sample training data set.
Upon pruning,  an optimal  (2,7;1)FENN two-step predictor
model evolved [11] which is illustrated below:
�y (k) = 0.96 �y (k-1)-0.82sin(2 �y (k-1))+0.57sin(2y(k-2))

        + 0.07cos(2 �y (k-1)) - 0.95�y (k-1)cos(y(k-2))

       + 0.04y(k-2)sin( �y (k-1)) + 1.42y(k-2)cos( �y (k-1))  (3.5)

The  arv  performance of the above 7-term FENN two-step
predictor model on the 500 sample test data is given in Table 2.
The FENN predictor can be seen to significantly outperform
the corresponding 17-term recurrent predictor model of  [8].

4. CONCLUSIONS

      A new feedforward two-layer linear in the parameters
neural network termed the FENN has been presented, together
with its design strategy and learning algorithm. It is basically a
hybrid neural network incorporating a set of non-linear basis
functions which have the effect of simulating sigmoidal
shaped, Gaussian shaped and polynomial subset activation
functions simultaneously. The use of an iterative pruning-
retraining strategy coupled with statistical model validation
tests was shown to result in parsimonious FENN predictor
models comprising the most significant of the proposed non-
linear basis functions. The final evolved FENN models
outperformed other more complex neural network predictors in
the modeling of  both the simulated chaotic Mackey Glass time
series and real-world noisy, non-stationary sunspot time series,
both in terms of non-linear prediction ability and relative
computational requirements. The respective contributions of
the various proposed non-linear basis functions responsible for
the superior FENN performance were also highlighted in the
case studies. An added benefit of the new  FENN, like the
VNN, is that  the structures of the corresponding FENN
predictor models may also provide highly useful insights into
the physics of the underlying unknown non-linear system
dynamics. In other tests to be reported elsewhere, the design
strategy presented for the FENN structure, the least squares
based learning algorithm and the pruning strategy  have also
resulted [11] in highly efficient FENN predictor models of a
variety of other complex, simulated and real-world non-linear
time series processes including the chaotic logistic, Henon and
Lorenz maps, SISO and MIMO NARX processes; and  real-
world stock market data, real laser time series  and actual
speech signals. Recently, a Recurrent FENN employing local
output feedback has also been developed [11] and shown to
outperform the above feedforward FENN in the modeling of
certain types of non-linear dynamical processes. Currently, the
FENN is also being investigated for performing non-linear
processing in full-band and multi-band speech enhancement
systems [15].
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Figure 1:The Functionally Expanded Neural Network (FENN)


