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ABSTRACT

We derive a new class of neural unsupervised learning
rules which arises from the analysis of the dynamics
of an abstract mechanical system. The corresponding
algorithms can be used to solve several problems in
Digital Signal Processing area, where orthonormal
matrices are involved. We present an application
which deals with blind separation of sources, i.e. a new
method to perform e�cient Independent Component
Analysis (ICA) of random signals.

1. INTRODUCTION

Some neural learning processes can be viewed as
searching processes in a proper state{space. For in-
stance, if we examine the adaptation behavior of linear
neural networks, as those commonly used to perform
whitening [6], linear compression [7] and blind separa-
tion [1, 2, 3], with input x 2 Rp, output y 2 Rn, and
described by y = W tx, we can view it as a search in a
matrix state{space M(p,n) in which it moves a point
represented by the weight{matrix W . Let us suppose
that we know in advance that the steady{state solution
(or the target of searching) belongs to a subset 
(p,n) of
M(p,n). Let us indicate withT = fW (t)g a generic tra-
jectory in the state{space, corresponding to a generic
searching process, for t belonging to a proper temporal
interval [�1; �2].

It is clear that T entirely lies on M, but not neces-
sarily all elements of T belong to 
. It means that it
exists a non{empty set DT = (M�
) \T containing
many wrong searching{step. The nonnegative power of
D measures the waste of time{steps in [�1; �2].

It follows that a learning rule, which a trajectory
search T such thatDT = ; pertains to, is more e�cient
than a learning rule that does not show this property.

�This research was supported by the Italian MURST. Please

send comments and suggestions to the �rst author.

Now, the problem is to �nd such a strongly{constrained
adaptation rule.

We present a solution to this problem in the spe-
cial case where 
 is a set of orthonormal matrices (i.e.
rectangular matrices N satisfying N tN = I) based on
a new neural learning theory derived from the analysis
of the dynamics of an abstract mechanical system.

Notations. The following notations are used
in this paper: the superscript t denotes the usual
transposition; I is an identity matrix; E[�] denotes the
statistical expectation of the argument; tr(�) denotes
the trace, i.e. the sum of the in-diagonal elements of
the square matrix in the argument; diag(d1; d2; : : : ; dn)
returns a n � n matrix whose i:th in-diagonal element
is di; �nally, the column rank of a rectangular m � n

matrix, with m > n, is denoted by rk[�].

2. THE MEC `NEURAL ENGINE'

In this section we shall derive some equations de-
scribing the dynamics of a rigid system of masses, and
then we shall show how to use it in the neural network
context.

Let S� = f[2mi; wi]g be a system of n masses 2mi

in an abstract space R
p, with n � p. Masses lie

on mutually orthogonal axes and are positioned at
a �xed (unity) distance from the origin, so that the
position vectors wi are such that wt

iwk = �i;k, for
i; k 2 f1; 2; : : : ; ng where �i;k is the Kronecker's delta,
while we suppose negligible the entity of the masses of
the rigid axes. Masses 2mi are positive, distinct, real
numbers. The space Rp contains an isotropic and ho-
mogeneous 
uid characterized by a non{null viscosity
coe�cient �. Moreover, the abstract space contains a
free point P with a negligible mass, whose coordinates
are the p components of a vector x, and which exerts
the forces Fi on the masses i:th, i = 1; 2; : : : ; n, pro-
ducing the global motion of the system. Let the origin
O of the axes be a �xed point in the space Rp.



The earlier assumptions imply that the masses can
only rotate around O and they never can translate
with respect to it. It follows that the system S

� is
dinamically equivalent to the adjoint symmetric sys-
tem S = f[mi; wi]; [mi;�wi]g that is symmetric in the
sense that if an external force Fi is applied to the mass
mi in wi then a force �Fi is applied to the mass mi in
�wi. In fact, the resulting force acting to the system
is null, therefore it never translates.
Thanks to the preceding observations, in the follow-

ing we can treat the adjoint system S instead of the
original system S

�. Dynamic equations describing the
motion of such an abstract mechanical system are de-
rived in the following:

Theorem 1 Let S be the system of n masses in R
p

described above, and let:

F =
�
F1 F2 � � � Fn

�
;

W =
�
w1 w2 � � � wn

�
;

M = diag(m1; m2; : : : ; mn) :

At any time the matrix of the instantaneous positions

W satis�es:
d W

d t
= 
W (1)

where 
 2 M(p,p) plays the role of an angular speed

tensor and its evolution is described by:

d


dt
=

1

4
(F + P )M�1W t

�
1

4
WM�1(F + P )t : (2)

where:

P = ��
W : (3)

Proof. The proof here is omitted because of space
limitations. 2

The main point is that 
 is a skew{symmetric
matrix, so, from equation (1), it follows that W (t)
remains an orthonormal matrix (i.e. it holds that
W tW = I) at any time t if it was at time t = 0.
Equations (1), (2) and (3) are �xed but the forcing

terms contained in F can be arbitrarily chosen. We
assume F derived by a potential energy function (p.e.f.)
U , which depends on W and on x, in the sense that:

F := �2
@ U

@ W
: (4)

Equations (1 { 2) can be directly interpreted as a couple
of adaptation rules for a linear neural network described
by y = W tx, with p inputs and n outputs, able to
perform a generic orthonormal signal processing. For
this reason we call it `neural engine' and we refer to it
as MEC{net.

It is here important to notice that the choice of a
potential energy function with which customize the
above neural system results widely free, therefore
we can refer to the set of learning rules that can
be obtained by particularizing the above �xed and
free adaptation equations as a whole class of neural

learning rules.

3. EQUILIBRIUM PROPERTIES

{ DISCRETIZATION

Due to its dissipative{nature, the equilibrium of such
a system is described by the following:

Proposition 2 If the potential energy U is chosen so

that the dynamics is asymptotically stable and the ini-

tial state of the system is orthonormal, then the sys-

tem reaches its equilibrium states when U is at its

orthonormal-constrained minima. 2

It follows that such property can be used to properly
chose the form of U to obtain a desired behavior for
the MEC{net. For instance, U can be assumed as a
properly convex cost function to be minimized.

For software{like application purposes, continuous{
time equations (1 { 2) must be discretized. This
operation must be conducted with some cautions.
We found an appropriate method to do this, i.e. a
discretization which maintains unaltered the property
of orthonormality of W at any computation step.

4. APPLICATION TO BLIND

SEPARATION

Although the MEC{net approach can be used in
many digital processing problems, in this paper we
present an application of the new algorithm to the blind
separation of source signals [3]. The problem is to sep-
arate n unknown independent source signals from their
linear full{rank over{determined mixture observed by
a set of sensors. Formally, if s is a n-components vector
containing such independent source signals and z is a
p-components vector containing observed signals from
sensors, it holds that z = Ats, where At is said mixing

matrix and it is such that rk[A] = n. It is well known
[2, 6, 7] that pre-processing z with a so-called stan-

dardizing (or whitening) stage, described by x = V tz,
such that E[xxt] = �2I, with � > 0 �xed, the original
source signals can be recovered from the new mixture
x by means of an orthonormal separation matrix W t,
i.e. at the equilibrium it results that:

y = W tx = DPs ; (5)



with D an indeterminable scaling matrix and P an in-
determinable permutation matrix [3]. Such an indeter-
minateness is due to the blind-nature of the problem.
In practice, without any a-priori information about
sources, we cannot recover the exact ordering or the
exact power of the source signals.
Probably, the simplest way to standardizing the ran-

dom signal z is to adopt the following whitening matrix:
V := ���1, where the pair (�;�) is a PCA ([2]) of z
such that �t� = I. The Principal Component Analy-

sis is a well-known statistical analysis technique, and in
literature several algorithms are known to perform it.
As we shall explain later, such a linear transformation
can be easily realized with a MEC-net sub-system, too.
Clearly, the last separation operation can be per-

formed using a MEC network when an appropriate en-
ergy function is chosen. For this purpose we state the
following, based on the basic concept of discriminant

contrast function de�ned by P. Comon in [2],

Proposition 3 If 	 is a discriminant contrast func-

tion over a set H of random signals, choosing U = 	,
the MEC algorithm can be able to separate any n{tuple

of source signal in H from an arbitrary mixture with

mixing matrix A, providing that the condition stated

in the Proposition 2 and the resolvability condition

rk[A] = n are veri�ed. 2

For instance, providing that all the source signals are
either leptokurtic or platikurtic (except for one allowed
to be gaussian) and are endowed with a symmetrical
probability density function, the discriminant contrast
function:

	(W;x) := �
1

4

nX
i=1

y4i ; (6)

is adequate. Notice that such a function is convex; it
is called Comon's discriminant contrast function.
Therefore, it can be assumed as potential energy

function U for the MEC-net, allowing the blind sep-
aration of the sources as stated by the Proposition 2.
The corresponding force F has the following expression:

F = �2xCbt[W tx] ; (7)

where the Cb[�] operator is de�ned by:

Cb
��

a b c � � �

�t�
=
�
a3 b3 c3 � � �

�
:

We call this forcing term C{Force.
As we mentioned earlier, it is here interesting to no-

tice that the standardization of a random vector can
be viewed as the composition of two elementary opera-
tions: a PCA optimal compression followed by a simple
scaling. Moreover, a PCA processing can be performed

by a linear transformation which is orthonormal [5,7],
therefore, in a neural context, it can be implemented
by a MEC-net endowed with a proper p.e.f.
We found a simple adequate quadratic p.e.f. which

leads to a forcing term that we call H{Force because it
recalls the well-known hebbian adapting term. Even if it
is not the aim of the paper to present the whole MEC-
net's theory, for the sake of completeness we explain
the above result in the following.
Let Np be a linear neural network with n outputs de-

scribed by v = T tu, that must be trained so that, at the
equilibrium, the pair (T; �) is a PCA of the input signal
u and let (�;�) an orthonormal PCA of u. By de�ni-
tion of PCA, if v has less components than u, the trans-
formed signal v must retain the major fraction of the
power of u compatibly with the loss in dimensionality.
Therefore, a proper learning rule for the weight-matrix
T can be obtained by maximizing the functional:

�(T; u) := +
1

2

nX
i=1

v2i ; (8)

with respect to T , under a proper consistency con-
straint, for instance under the constraint that T tT = I.
Unfortunately, the non-strongly constrained maxi-

mization of the above objective function leads only to
an orthonormal linear combination of the eigenvectors
in � or, in other words, the network Np becomes a
Principal Subspace Analizer ([4]) of the input signal,
instead of a Principal Component Analyzer.
Into the MEC environment this drawback disap-

pears, and assuming the function (8) with the sign
changed, U := ��, as a p.e.f. it allows the algorithm
to determine an orthonormal PCA of the signal (with
eigenvalues not ordered as in �). The corresponding
forcing term has the following expression:

F = 2uvt ; (9)

and this explains because we refer us to it as an Heb-
bianic Force.
About the convergence properties of the MEC with

the above p.e.f., more formally we state that the fol-
lowing proposition holds:

Proposition 4 Let u be a real-valued, zero-mean

random signal with a �nite covariance, and v = T tu

a neural network with the MEC learning rule with

the expression (9) as forcing term. If the matrix of

the masses M is composed of all-distinct in-diagonal

values and the initial state T (0) is orthonormal, at the

statistical equilibrium the network becomes a Principal

Component Analyzer, i.e., in the mean (T1; �) is an

orthonormal PCA of u. 2



5. EXPERIMENTAL RESULTS

As an application, we can use our algorithm to solve a
simple blind separation problem with two sources (n =
2) and three sensors (p = 3). We assume the following
mixing matrix:

At =

2
4 1 �2

0 3
1 �1

3
5 ;

and we use, as components of s, a couple of wide{
band source signals (zero-mean white noise with 
at
probability density function) and a couple of narrow{
band source signals (sinusoid by arbitrarily chosen fre-
quency), both normalized to have unity powers. The
resulting z = Ats signal at the sensors must be �rstly
standardized and then orthonormally separated.
The �rst operation can be performed using a two-

stage neural network, described by x = V tz, composed
by a linear compressor (e.g. a PCA network [5, 7] or a
MEC-net provided with a properly chosen forcing term)
and a simple post-scaler; the second can be performed
by a MEC-net with a proper forcing term.
Both in the wide{band and in the narrow{band case,

we found through simulations that the standardization
can be performed by a linear transformation repre-
sented by the operator:

V t �=

"
1p
1:30

0

0 1p
14:67

# 24 0:448 �0:570
0:612 0:757
0:652 �0:313

3
5
t

so that for the standardized signal x the E[xxt] = I

holds true. In particular, we found the second matrix
in the product, by running a MEC algorithm provided
by an H{Force.
Now, since the resolvability condition rk[A] = 2

holds, the two source signals can be separated from
x by means of a pure rotation through a linear neural
transformation described by y = W tx. From calculus
we found that such a transformation should be:

W t �=

�
0:96 0:25

�0:23 0:97

�
:

Because the signals to be separated are either
platikurtic we can use the C{Force for the MEC-net
with the proper sign. Running our algorithm we found
the averaged matrix:

W t �=

�
0:97 0:24

�0:24 0:97

�
:

To those values it corresponds the following averaged
separating product :

DP �=

�
0:984 0:019
0:007 1:001

�
:

So, the relative interference residuals are, respec-
tively, of {43dB and {34dB.

6. CONCLUSION

In the paper we presented a new class of semi{
general purpose neural learning algorithms, that
can provide an e�cient method to solve several
orthonormal signal processing problems, based on
the dynamics of an abstract mechanical system: the
MEC environment. Then, we presented an application
to blind source signals separation based on a known
problem decomposition: this allow us to show two
possible ways to use our MEC-net environment, i.e.,
in linear compression and in orthonormal separation.
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