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ABSTRACT

We present a neural-network approach which allows se-
quential extraction of source signals from a linear mixture
of multiple sources in the order determined by absolute val-
ues of normalized kurtosis. To achieve this, we develop a
non-linear Hebbian learning rule for extraction of a single
signal. We discuss several techniques which enable extrac-
tion of signals not randomly but in the desired order. To
prevent the same signals from being extracted several times,
a robust de
ation technique is used which eliminates from
the mixture the already extracted signals. Extensive com-
puter simulations con�rm the validity and high performance
of our method.

1. INTRODUCTION

Separation of original source signals from a linear mixture
of them is a problem of interest in many applications such as
biomedical signal processing (ECG or EEG), speech recog-
nition (cocktail party problem), image enhancement and
telecommunication [1,3-10].
Most neural solutions to this problem in the literature

[1,3,5,7,9] take an approach which attempts to separate all
of the original source signals simultaneously. This approach
employs an assumption that the number of sources in known
and usually equal to the number of sensors. In practice,
however, the number of active sources is not known a priori.
Moreover, in some applications we may have a mixture of
hundreds or thousands of signals and we want to extract
from this mixture only the most \interesting" or signi�cant
signals with speci�ed stochastic properties. Such signals
usually bring the most useful information [2].
Our objective in this paper is to extract at a time the

source signal which is most deviated from Gaussian signals.
From practical point of view, this objective is crucial. With
a de
ation procedure discussed in [4] which eliminates from
the mixture the already extracted signals, we can extract
signi�cant source signals step-by-step. In addition, we can
choose to terminate the extraction as soon as a newly ex-
tracted signal is closed to Gaussian or the amplitude of ev-
ery signal in the new mixture is closed zero. As a result, the
a priori knowledge of the number of sources is not needed.
To extract a single source signal, methods for blind equal-

ization or deconvolution problems [11] can be used, as done
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in [4,6,8,10]. Namely, extraction of an independent source
signal can be achieved by maximizing (and/or minimizing)
the fourth order cumulants subject to certain constraints.
To prevent duplicate extraction, an adaption of the orthog-
onal Schur eigenvalue de
ation technique was used in [6].
This technique is, however, not suited for on-line, real-time
applications due to its rather high complexity. In [8], the hi-
erarchical orthogonalization technique was used. However,
it is rather di�cult to choose proper values for the coe�-
cients corresponding to the orthogonalizing feedback terms,
unless a priori knowledge of the kurtosis of sources signals
is known.
In the rest of this paper, we present on-line extraction

and de
ation learning algorithms in Section 2. To ensure
extraction of source signals in the desired order, we discuss
several techniques in Section 3. We show exemplary sim-
ulation results in Section 4, and summarize the paper by
conclusions and open problems in Section 5.

2. ON-LINE EXTRACTION AND DEFLATION

LEARNING ALGORITHMS

The observed sensor signals at discrete time t can be ex-
pressed through the following linear model

x(t) =As(t) t = 0; 1; 2; . . . (1)

where x(t) is an n � 1 sensor vector, s(t) is an m � 1 un-
known source vector having independent and zero-mean sig-
nals, andA is an n �m unknownmixing matrix. Now let us
consider a single processing unit y1 = wT

1 x =
P

n

j=1
w1jxj :

The unit successfully extracts a source signal ifw1(t) = w1�

satisfy the relation wT

1�A = ek, where ek denotes the k-th
column of the n � n identity matrix I.
A possible loss (contrast) function can be formulated as

[11]:

J1(w1) = �
1

4
j�4(y1)j (2)

subject to the constraint that Rxx = I (i.e., the mixing
signals are prewhitened or decorrelated), where �4(y1) is

normalized kurtosis de�ned as �4(y1) =
E
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� � 3. Min-

imization of such a loss function according to stochastic
gradient descent (SGD) approach leads to a simple learn-
ing rule:

w1(t + 1) = w1(t)� �1(t)f
�
y1(t)

�
x1(t); (3)



where �1(t) > 0 is a learning rate, x1(t) is a

prewhitened version of the mixing signals, f
�
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and p = 2; 4, and y = wT

1 x1.
The high order moments m2;m4 and the sign of kurtosis
�4 can be estimated on-line using the following averaging
formula:

mp

�
yk(t)

�
= (1� �)mp

�
yk(t� 1)

�
+ �y

p

k
(t); (4)

where � is a small positive constant. In the special case
when statistics of signals are known, we could use �xed

nonlinearity with �(t) =
m2

�
y1(t)

�
m4

�
y1(t)

� = constant.

After a successful extraction of the �rst source signal
y1(t) � sj(t) (j 2 f1; . . . ; ng) , we can apply a de
ation
procedure which removes previously extracted signals from
the mixture. This means that we are looking for such an
on-line linear transformation given by

xk+1(t) = xk(t) � ewk(t)yk(t) k = 1; 2; . . . (5)

which ensures minimization of the generalized energy (loss)
function eJk(ewk) =

1

2
kxk+1k

2 ; (6)

where yk = wT

k xk, xk = [xk1; xk2; . . . ; xkn]
T ; wk(t+ 1) =

wk(t) + �wk(t), �wk(t)
def
= ��k(t)f

�
yk(t)

�
xk(t),

and fk
�
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= sign
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� . The last term m4=m
3
2 can be absorbed by learn-

ing rate �k(t) since it is always positive. Minimization of
the above de�ned loss function leads to a simple learning
rule:

ewk(t+1) = ewk(t)+e�k(t)yk(t)xk+1(t) k = 1; 2; . . . : (7)

The procedure can be continued until all of the estimated
source signals are recovered, i.e., until the normalized kurto-
sis of the newly extracted signal �4(yk(t)) or the amplitude
of each de
ated signal xk+1;i are below given thresholds.
This means that it is not necessary to know the number of
source signals in advance.

3. TECHNIQUES FOR AVOIDING LOCAL

MINIMA

It can be shown that the loss function in (2) has no spurious
local minima [11]. In other words, each local minimum
corresponds to a successful extraction of a single source.
However, only global minima correspond to an extraction
of the signal with maximum value of normalized kurtosis.
Unfortunately, SGD does not guarantee to achieve global
(optimal) minima. In order to avoid being stuck in local
minima, we could apply several techniques.
The �rst novel technique is to apply the nonlinear func-

tion f(y) = sign[�4(y)]fy � �(t)y3g with �(t) gradu-
ally changing from zero to the value determined by � =

m2(y)=m4(y) during the learning process. However, this
technique is not suitable for highly nonstationary signals.
Alternative techniques for avoiding local minima and im-

proving performance of learning are to add to inputs, out-
puts and/or synaptic weights a Gaussian uncorrelated noise
signals, i.e.,
(a) additive noise for outputs

f(byk(t)) = f
�
yk(t) + �k(t)

�
; (8)

(b) additive noise for inputs

bxkj(t) = xkj(t) + �kj(t); (9)

(c) additive noise for synaptic weights

bwkj(t + 1) = wkj(t) +�wkj + �kj(t): (10)

The basic idea is to change the shape of loss functions by
incorporating auxiliary noise. Of course, this noise should
be gradually decreased to zero in analogy to the concept of
the simulated annealing algorithm [5,12].
The approach is illustrated by a simple 2-D example with

only two sources (s1 and s4 in Fig. 2.a) mixed by mixing
matrix A = [1.0, 0.5; 0.5, 1.0]. Fig. 1 shows the shape of
the loss function for di�erent levels of noise added to the
output where �1 = 0; n1; 3n1; and 5n1 in (a), (b), (c), and
(d), respectively, and n1 is a Gaussian noise with mean 0.0
and variance 1.0.
Combinations of these techniques are also possible. We

are currently investigating the e�ects of these techniques
from theoretical view points.

4. COMPUTER SIMULATIONS

We con�rmed the validity and performance of our meth-
ods using extensive computer simulations for a variety of
problems. Below, due to limit of space, we only present an
illustrative example of typical results in Fig. 2. In this ex-
ample, we added the following noise �k(t) to the nonlinear
function f(yk(t)) + �k(t) with �k(t) = 10nkexp(�0:005t)
for t � 1000; 0 otherwise, where nk is a Gaussian noise with
mean 0.0 and variance 1.0. The learning rates for extrac-
tion �k and de
ation e�k were initialized to 0.01 and 0.001,
respectively, which were then adaptively changed according
to the adaptive learning rate scheme in [4]. Execution of
a next processing unit is delayed for 5000 time steps after
initiating execution of the previous unit.
Fig. 2 shows the results of extraction of four unknown

signals (Fig. 2.a) from a mixture of them received at four
sensors (Fig. 2.b) with the following normalized kurto-
sis: �4(s1) = �1:5; �4(s2) = 0:4; �4(s3) = �1:49; and
�4(s4) = �2. The prewhitened signals, obtained by a stan-
dard algorithm, are shown in Fig. 2.c. The extracted out-
puts are shown in Fig. 2.d and the de
ated signals are given
in Fig. 2.e. Visual comparison of Figs. 2.a and 2.d con�rms
that the source signals were successfully extracted, and, in
addition, in decreasing order of absolute values of normal-
ized kurtosis. The fact that the number of source signals
was four, which was not known to the system, was con-
�rmed by having the very small amplitude of every element
in x5.
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Figure 1. Loss functions without noise injection (a)

and with di�erent levels of Gaussian noise added to

the output (b) - (d).

5. CONCLUSIONS

We have presented a neural-network approach for on-line
blind signal extraction. Several techniques have been dis-
cussed which allow to avoid local minima and therefore en-
able to extract source signals with speci�ed order, i.e., in
decreasing order according to absolute values of their nor-
malized kurtosis. Our approach has the following features:
It uses a simple cost function (absolute value of normalized
kurtosis) without any constraints. From this cost function,
simple adaptive nonlinear functions are derived. These non-
linear functions change their shapes during the learning pro-
cess. Moreover, the proposed algorithms are able to extract
signals both sub-Gaussian and super-Gaussian. The devel-
oped learning algorithms are purely local and are biologi-
cally plausible; they could be considered as a generalization
or extension of Hebbian/anti-Hebbian rules. The proposed
methodology can be extended to multi-channel blind signal
deconvolution or generalized to complex-valued signals.
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(c) prewhitened signals
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(d) extracted signals
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(e) de
ated signals after the 1-th and 4-th processing unit, respectively

Figure 2. A typical result of extraction of four sources mixed in four sensors (with 10 KHz sampling rate), where
sk; xk; and yk stand for the k-th source, mixed, and extracted signals, respectively.


