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ABSTRACT

In this paper adaptive least-squares type algorithms are in-
troduced for blind source separation. They are based on
minimizing a criterion used in context with nonlinear PCA
(Principal Component Analysis) networks. The new al-
gorithms converge clearly faster and provide more accur-
ate results than typical current adaptive blind separation
algorithms based on instantaneous gradients. They are
also applicable to the di�cult case of nonstationary mix-
tures. The proposed algorithms have a close relationship to
a nonlinear extension of Oja's PCA learning rule. A batch
algorithm based on the same criterion is also presented.

1. INTRODUCTION

Blind source separation (BSS) has lately become a popular
research area both in statistical signal processing and un-
supervised neural learning. In BSS, the goal is to separate
mutually statistically independent but otherwise unknown
source signals from their linear mixtures without knowing
the mixing coe�cients. BSS techniques are needed in many
applications of signal processing [1].

Conventional linear discrete-time signal processing sys-
tems are not adequate in the BSS problem, because some
higher-order statistics must be employed for achieving sep-
aration. In neural (or adaptive) BSS methods [2, 3, 4, 5],
this is typically done implicitly by using suitable nonlinear-
ities in the learning algorithms. Di�erent neural approaches
to BSS and to the closely related Independent Component
Analysis (ICA) are reviewed in the recent tutorial paper [5].
Several authors have independently shown that fairly simple
neural rules are able to learn a satisfactory separating solu-
tion in many instances. In particular, we have recently
shown that certain nonlinear PCA type neural algorithms
can sometimes successfully separate even 10 sources on cer-
tain conditions [6].

However, the existing adaptive and neural separation
algorithms are usually based on a crude instantaneous es-
timate of the stochastic gradient. Such algorithms are fairly
simple, but require a careful choice of the learning para-
meter(s) for acceptable performance. If the learning para-
meter is too small, convergence can be intolerably slow. On
the other hand the algorithm may become unstable if the
learning parameter is chosen too large. It is di�cult to ap-
ply these algorithms to large-scale problems because of the

poor accuracy of the instantaneous gradient estimate. Fur-
thermore, convergence speed can greatly depend on initial
values.

In [7] Yang introduced computationally e�cient approx-
imate recursive least-squares algorithms for tracking signal
subspaces or principal (PCA) eigenvectors of the data cov-
ariance matrix. However, these algorithms cannot be used
for the BSS problem because they utilize second-order stat-
istics only. In this paper we combine our earlier results with
Yang's algorithms. By incorporating nonlinearities, we get
new adaptive BSS algorithms which converge much faster
than existing neural blind separation algorithms.

2. BLIND SOURCE SEPARATION

The blind source separation problem has the following basic
form. Assume that there exist m zero mean source signals
s1(t); : : : ; sm(t) that are scalar-valued and mutually statist-
ically independent (or as independent as possible) at each
time instant t. The original sources si(t) are unknown,
and all that we have are n possibly noisy but di�erent lin-
ear mixtures x1(t); : : : ; xn(t) of the sources. The mixing
coe�cients are some unknown constants. In blind source
separation, the task is to �nd the waveforms fsi(t)g of the
sources, knowing only the mixtures xj(t).

Denote by x(t) = [x1(t); : : : ; xn(t)]
T the n-dimensional

t:th data vector made up of the mixtures at discrete time
(or point) t. The BSS signal model then takes the form

x(t) = As(t) + n(t): (1)

Here s(t) = [s1(t); : : : ; sm(t)]T is the source vector, and A
is a constant full-rank n�m mixing matrix whose elements
are the unknown coe�cients of the mixtures. The addit-
ive noise term n(t) is often omitted from (1), because it is
usually impossible to separate noise from the source signals.

The number of available di�erent mixtures n must be
at least as large as the number of sources m. Usually m
is assumed known, and often m = n. Furthermore, each
source signal si(t) is assumed to be a stationary zero-mean
stochastic process. Only one of the sources is allowed to
have a Gaussian distribution.

In neural and adaptive BSS, an m�n separating matrix
B(t) is updated so that the m-vector

y(t) = B(t)x(t) (2)



becomes an estimate y(t) = ŝ(t) of the original independent
source signals. In neural realizations, y(t) is the output vec-
tor of the network, and the matrix B(t) is the total weight
matrix between the input and output layers. The estimate
ŝi(t) of the i:th source signal may appear in any compon-
ent yj(t) of y(t). The amplitudes of the estimates yj(t) are
typically scaled so that they have unit variance.

In many BSS algorithms, the data vectors x(t) are pre-
processed by whitening them. This is done by applying a
linear transform which makes the covariance matrix of the
whitened vectors m�m unit matrix Im. Standard PCA is
often used for this purpose [5]. In tracking applications it is
necessary to use adaptive whitening. One such update rule
is

�V(t) = �[I� v(t)vT (t)]V(t) (3)

where V(t) is the whitening matrix and v(t) = V(t)x(t) is
the whitened vector. After prewhitening the separation task
becomes somewhat easier, because the components of the
whitened vectors v(t) are uncorrelated. Also the subsequent
separating matrix, denoted here for clarity by WT (t), can
be taken orthogonal: WT (t)W(t) = Im.

In the standard stationary case, the whitening and sep-
arating matrices converge to some constant values during
learning. However, the same model can be used in non-
stationary situations by keeping these matrices time-varying.

As a separating criterion, we use the sum of kurtoses
Efyi(t)

4g � 3[Efyi(t)
2g]2 of the outputs of the network,

because this provides simple but yet su�ciently e�cient
neural algorithms. The theory is presented in more de-
tail in [5]. This criterion is minimized for sub-Gaussian
sources (for which the kurtosis is negative) and maximized
for super-Gaussian sources (having a positive kurtosis).

3. NONLINEAR PCA CRITERION

We have previously studied various robust and nonlinear
extensions of PCA neural networks and learning algorithms
in several papers; see [8]. In particular, we have considered
the cost function

J1(W) = Efkx �Wg(WT
x)k2g: (4)

Here g(y) denotes the vector which is obtained by applying
an odd nonlinear function g(t) to each component of the
vector y. A typical choice is g(t) = tanh(t). The criterion
(4) can be approximately minimized with respect to the
weight matrix W using the nonlinear PCA subspace rule
derived in [9]:

�W(t) = �(t)[x(t)�W(t)g(y(t))]g(yT(t)) (5)

Here�W(t)=W(t+1)�W(t), and �(t) is a positive learn-
ing parameter, usually a small constant. The algorithm (5)
utilizes instantaneous stochastic gradient.

Later on, we have shown [6] that if the mixture vec-
tors x(t) are prewhitened, W(t) becomes an orthogonal
m �m separating matrix. For sub-Gaussian sources, the
sigmoidal nonlinearity g(t) = tanh(t) provides separation
[6]. The nonlinear PCA rule (5) can be applied also for
super-Gaussian sources using Fahlman type nonlinearities
[10].

Theoretical justi�cations for the use of the criterion (4)
and the algorithm (5) in separation are presented in [6] and
[10]. In particular, the local minima of J1(W) correspond
to separating orthogonal matrices W for prewhitened data
vectors.

4. NONLINEAR LEAST-SQUARES

ALGORITHMS

In the linear special case g(t) = t the criterion (4) reduces
to

J2(W) = Efkx �WW
T
xk2g: (6)

It is well known [9] that the cost function (6) is minimized
by any orthogonal matrixW whose columns lie in the PCA
(signal) subspace de�ned by the principal eigenvectors of
the data covariance matrix EfxxT g. Yang has recently de-
rived in [7] a recursive least-squares algorithm called PAST
for minimization of the linear PCA criterion (6). The PAST
algorithm can be used for adaptive estimation and tracking
of the PCA/signal subspace.

In this paper we extend Yang's PAST algorithm so that
it can be used for minimizing the more general nonlinear
PCA criterion (4). One iteration of our modi�ed PAST
algorithm is

z(t) = g(WT (t� 1)x(t))

h(t) = P(t� 1)z(t)

m(t) = h(t)=(� + zT (t)h(t))

P(t) =
1

�
U
�
P(t� 1)�m(t)hT (t)

�
e(t) = x(t)�W(t� 1)z(t)

W(t) =W(t� 1) + e(t)mT (t) (7)

The constant 0 < � � 1 is a forgetting term which
should be close to unity. U denotes that only the upper
triangular part of the argument is computed. Its transpose
is then copied to the lower triangular part so that the matrix
becomes symmetric. The initial values W(0) and P(0) can
be chosen for example to m�m unit matrices. In applying
the algorithm (7) to the BSS problem, the data vectors x(t)
must be prewhitened according to the previous theory.

The algorithm (7) can be derived as follows [7, 11]. The
unknown expectation in (4) is �rst replaced by the respect-
ive sample mean, leading to a similar least-squares criterion.
Then the unknown vector g(WT (t)x(t)) is approximated
by z(t) = g(WT (t� 1)x(t)). This vector can be computed
because the previous weight matrix WT (t� 1) is known in
the adaptive algorithm. The approximation error is usually
small because the update �W(t) becomes small compared
withW(t) after initial convergence. These steps lead to the
modi�ed least-squares type criterion

J3(W(t)) =

tX
i=1

�
t�i k x(i)�W(t)z(i) k2 : (8)

We have included a forgetting factor � into the criterion (8).
If � = 1, no forgetting of old data takes place. Choosing
� < 1 is useful especially in tracking nonstationary changes



in the data. The cost function (8) has now the standard
form used in recursive least-squares methods [11]. Several
algorithms exist for �nding the optimal weight matrixW(t)
iteratively. We have here used the e�cient algorithm (7).

The algorithm (7) can be regarded either as a neural
network learning algorithm or adaptive signal processing al-
gorithm. It doesn't require any matrix inversions, the most
complicated operation being a division by a scalar. The
algorithm can be modi�ed easily so that the weight vec-
tors are computed sequentially using a de�ation technique,
resulting in the following algorithm:

x1(t) = x(t);

For each i = 1; : : : ;m compute

zi(t) = g(wT
i (t� 1)xi(t));

di(t) = �di(t� 1) + [zi(t)]
2
;

ei(t) = xi(t)�wi(t� 1)zi(t);

wi(t) = wi(t� 1) + ei(t)[zi(t)=di(t)];

xi+1(t) = xi(t)�wi(t)zi(t): (9)

In the case of only one weight vector (m = 1), both (7)
and (9) reduce to the form

w(t) = w(t� 1) +
1

d(t)
[x(t)�w(t� 1)z(t)]z(t)

(10)

where z(t)= g(wT (t�1)x(t))= g(y(t)), and d(t)= �d(t�1)
+ [z(t)]2. A comparison with the nonlinear PCA learning
rule (5) shows that these two algorithms are the same ex-
cept for the scalar learning parameter. In (10), the learn-
ing parameter 1=d(t) is determined automatically from the
properties of the data so that it is roughly optimal due to
the minimization of the least-squares criterion (8). On the
other hand, in (5) the learning parameter �(t) is usually a
constant which is chosen by somewhat ad hoc manner or by
tuning it to the average properties of the data. It is just this
nearly optimal choice of the learning parameter that yields
the recursive least-squares algorithms their superior conver-
gence properties compared to standard stochastic gradient
type learning algorithms such as (5).

5. BATCH ALGORITHM

The form of the cost function (4) suggests a straightforward
batch algorithm for optimizing the matrixW. If we assume
for the moment that the matrix W in the term g(WTx) is
constant, we can consider (4) as the least-square error for
the linear model

X =Wg(WT
X) + e =WG+ e; (11)

where

G = [g(WT
x(1)); : : : ;g(WT

x(N))];

X = [x(1); : : : ;x(N)]:

The best approximate solution in the least-squares sense
is [12]

W = XG
+ = XG

T (GGT )�1; (12)
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Figure 1: Average signal-to-noise ratios in dB. Solid line:
nonlinear least-squares algorithm. Dashed line: nonlinear
PCA subspace rule.

where G+ is the pseudoinverse of G. By setting an initial
value for W, for example the unit matrix, and iterating
the formula (12) we get an iterated least-squares batch al-
gorithm for minimizing (4). A sequential version of this
batch algorithm can be derived in a similar manner [12].

If the number N of the data vectors x is large, the
computational load of the batch algorithm (12) becomes
clearly higher than that of the recursive algorithm (7). In
this case, one can use smaller subsequent segments of the
data matrix X in each iteration of the batch algorithm. For
more details and experimental results, see [12].

6. EXPERIMENTS

In the �rst experiment the convergence speed of the pro-
posed nonlinear least-squares type algorithm (7) was com-
pared to the nonlinear PCA algorithm (5). Four mixtures
of four sub-Gaussian source signals (a sinusoid, uniformly
distributed white noise, a ramp signal, and a binary sig-
nal) were constructed. The elements of the mixing matrix
were Gaussian random numbers. These mixtures were �rst
whitened and then the separating matrix was estimated us-
ing the algorithms (7) and (5). In both algorithms, the
nonlinear learning function was the sigmoid g(t) = tanh(t).
The learning rate was � = 0:01 for the nonlinear PCA al-
gorithm (5), and the forgetting factor was � = 0:99 for the
nonlinear least-squares algorithm (7). The resulting average
signal-to-noise ratios computed after every tenth iteration
are shown in Fig. 1. In computing the SNRs, noise denotes
the error between the true source signal and its best es-
timate. Thus Fig. 1 desribes the quality of the separation
results, and shows that the least-squares type algorithm
(7) converges dramatically faster than the nonlinear PCA
algorithm (5).
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Figure 2: The estimation of the angles �1 and �2. The
two solid diverging lines are the correct values of �i. The
oscillating curves are the estimated angles.

The results were qualitatively similar in all the com-
puter simulations that we have made thus far. After a
su�ciently large number of iterations, the nonlinear PCA
algorithm and other similar stochastic gradient type sep-
aration algorithms usually converge close to a separating
solution. However, the number of iterations needed may
vary greatly depending on the initial values and learning
parameters. These algorithms have sometimes di�culties
in converging at all especially if the number of sources m is
not small. The nonlinear least-squares algorithm (7) con-
verges much faster.

A simple tracking experiment was made by using a time-
dependent mixing matrix

A(t) =

�
cos(�1(t)) cos(�2(t)
sin(�1(t)) sin(�2(t)

�

The columns of A(t) are unit vectors with angle �i(t). The
independent source signals were a sinusoid and a ramp sig-
nal, and the total number of samples was 5000. The angles
were initialized to �1(1) = 0:3 and �2(1) = 0:2. During
the simulation, they linearly changed to the �nal values
�1(5000) = 0:3 + �=4 and �2(5000) = 0:2 � �=4 as shown
by the solid lines in Fig. 2. The algorithm (3) was used for
whitening. From the separating matrix B(t) estimated us-
ing the nonlinear least-squares algorithm (7), we computed
the respective estimated angles. These are depicted by the
more randomly �uctuating curves in Fig. 2. Fig. 2 shows
that the algorithm (7) is able to track the changes in the
mixing matrix with good accuracy after the initial transient
phase.

7. CONCLUSIONS

In this paper, we have introduced fast adaptive RLS type
algorithms for blind source separation. The proposed al-
gorithms provide good performance at a moderate com-
putational cost. They can be used also in nonstationary
situations.
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