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ABSTRACT

This paper presents an extensive investigation of the use
of trigraphs for on-line cursive handwriting recognition
based on Hidden Markov Models (HMMs). Trigraphs
are context dependent HMMs representing a single
written character in its left and right context, similar to
triphones in speech recognition. Looking at the great
success of triphones in continuous speech recognition
([1]-[3]), it was always a challenging and open question,
if the introduction of trigraphs could lead to
substantially improved handwriting recognition systems.
The results of this investigation are indeed extremely
encouraging: The introduction of suitable trigraphs led
to a 50% relative error reduction for a writer dependent
1000 word handwriting recognition system, and to a
35% relative error reduction for the same system with an
extended 30000 word vocabulary for cursive
handwriting recognition.

1. INTRODUCTION

Regarding unconstrained, cursive written words it seems
obvious, that the context of a character within a word
has a basic influence on the character itself. Fig. 1 shows
some examples how a handwritten character can occur
in different styles depending on its left and right context.

Fig. 1: Example for the context dependency of
characters in unconstrained cursive handwriting.

The grapheme /n/ for instance, shows completely
different characteristics in the context of /o/ and /t/ in
the word “context“ than in the context of /e/ and /d/ in

the word “dependent“. Similar effects can be observed
for the grapheme /t/, which differs in the context of /n/
and /e/ in the word “context“ from the /t/’s at the word
ends. This example gives an idea of the potential of
context dependent modeling to increase the accuracy in
handwriting recognition systems, which is directly
emphasized and discussed in this paper.
In the following section we give a brief description of
the handwriting recognition system and the database
which is used for training and test. The third section
describes the introduction of trigraphs and the problems,
which arise with this approach. Some strategies are
discussed to solve these specific problems, and results
are presented before we give a summarizing conclusion
in the last section.

2. SYSTEM OUTLINE

Our handwriting system is based on discrete HMMs and
has several special features in order to obtain high
performance cursive handwriting for large vocabulary
recognition tasks [4].

2.1 Feature Extraction

After the handwriting was captured by a digitizer tablet
with a constant sample rate, the trace of the pen is given
as a sequence of Cartesian coordinates. To suppress the
influence of the writing speed, this trajectory is spatially
re-sampled with vectors of constant length [4]. This re-
sampled sequence of vectors with constant length and
different orientations, is the base for the extraction of
three on-line features and one off-line feature.
Because absolute position of the vector is irrelevant, one
single vector is completely described by its orientation.
The first on-line feature vector, which is extracted from
the re-sampled trajectory consists of the sine and cosine
of the angle of the current re-sampling vector. The
second feature vector includes  the sine and cosine of the
differential angle between two re-sample points. The



third on-line feature is a binary feature and describes the
pen pressure, which can be zero (negative pressure=pen
lifted) or one (positive pressure=pen set down).
The off-line feature is a bitmap of 30x30 pixels. The
bitmap is centered around the current re-sampling
position and is slided jointly along the pen trajectory
during re-sampling. A spatial sub-sampling of the
bitmap results in a window of 3x3 blocks, which is used
as a nine dimensional off-line feature vector. The
additional bitmap has been recently introduced and
already improved the original system presented in [4].
Therefore, in the following all other comparisons are
related to the monograph based system using this
additional off-line feature. In this configuration, we
obtained a recognition rate of  96.76% for the 1000 word
vocabulary task and 92.47% recognition rate with a
30000 word vocabulary. The use of the off-line feature
resulted especially in combination with trigraphs in an
improved recognition: The trigraph based system
obtained  96.24% recognition rate for the 1000 word
recognition task without off-line feature, while the
recognition rate of the same system with additional
bitmap was 98.39%. This means a relative error
reduction of 57% with the bitmap approach.
Multiple codebook technique is used for quantizing the
angle, the differential angle and the sub-sampled bitmap
of 3x3 blocks resulting in three different discrete feature
streams plus the pressure feature. As vector quantizer
the well known k-means algorithm is  used with
different codebook sizes for each feature vector.

2.2 Modeling

Each of 80 baseline characters is represented by a single
linear discrete HMM consisting of 12 states. This
unusual high number is necessary in order to cope with
the non stationary data resulting from spatial re-
sampling of the pen input.

2.3 Database

The database, which is written by a male writer consists
of 125 sentences including 2000 words for training and
is  represented by 500000 feature vectors. For testing,
200 written words from another corpus are used. The
active vocabulary is either 1000 words for a more
compact and quicker performance test case, or 30000
words for a very complex large vocabulary handwriting
recognition task.

3. TRIGRAPH MODELING

The goal was now to further improve this already
powerful handwriting recognition system by introducing

trigraphs as basic units for representing the characters in
the system.

3.1 Clustering

The usual way for building trigraphs in such a system
would be as follows:
• Trigraph generation from the trained monographs.
• Re-estimation of the generated trigraphs.
• Parameter-clustering.
• Re-estimation of the clustered trigraphs.
After Baum-Welch re-estimation of the monographs a
set of context dependent trigraphs is generated in the
first step. Depending on the used vocabulary the
monograph models are copied to corresponding trigraph
models. This resulted in a set of 2300 (8900) trigraph
models for the 1000 (30000) word vocabulary. After re-
estimation in step two, the third step would be a data
driven state clustering. Data-driven clustering means,
that either those states share the same parameter set
which have a small distance in their parameters or which
are outlying in the parameter space. Outlying states were
shared with the nearest cluster in the parameter space.
Building trigraphs leads  to a very large number of
HMMs, whereby the number of feature vectors per
HMM drops drastically. Clustered HMMs share the
same parameters  in order to increase the number of
feature vectors which are available for training relative
to the number of free system parameters. Arguing that
the context has a small influence to the center states of a
trigraph, clustering can be applied to all center states
across all trigraphs with the same central grapheme. In
this way, a suitable clustering could avoid inaccurate
parameter estimation in step four.
With this procedure a maximum recognition rate of
90.32% could be obtained for the 1000 word vocabulary
(see Tab. 1, third column). This means a disappointing
relative error reduction of -198.8%.

3.2 Selected Trigraphs

The decreased recognition rate with the clustered
trigraphs compared to the recognition rate of the
baseline system with monographs results from two main
problems, which arise with the introduction of trigraphs.
As mentioned above, there is a significantly enlarged
number of models. This leads to the effect, that most
models were just represented by one or two examples in
the training set. Fig. 2 shows, that in case of the 1000
word vocabulary for 850 trigraph models only one
example appears in the training set (N=1) and that 310
trigraph models will be trained with only two examples
(N=2).
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Fig. 2: Frequency M of trigraph models with N
examples in the training set (1000 word vocabulary).

At this point of research the used training database of
2000 words seemed too small for building a powerful
trigraph system. Also can be found in [5], that a training
set between 1000 and 2000 words is just enough for a
monograph system.
We were expecting that we could easily solve this sparse
data problem by reducing the number of free HMM
parameters through appropriate clustering methods, as
mentioned before. To our surprise, even after successful
clustering we were left with the disappointing drop of
the recognition rate from 96.76% to 90.32% as
documented in columns 2 and 3 of Table 1. Through a
more detailed analysis of Fig. 2, we detected later the
second major problem of our trigraph approach for
handwriting recognition: The leftmost part of the
function in Fig. 2 shows that for N=0, the number of M
is equal to 300. This can be interpreted in the following
way: In the 1000 words used for our recognition task,
there are 300 trigraphs for which we have no training
examples in our training database. This problem of
“unseen trigraphs“ typically occurs in open vocabulary
tasks, where the vocabulary used in the training and test
data differs substantially. In the 30000 word vocabulary,
this problem is even much more evident, because in this
case we obtained 6900 unseen trigraphs compared to

2000 seen trigraphs from the training set. The major
problem results now from the fact, that during clustering
many unseen trigraphs are clustered together with seen
trigraphs and are then trained with the data assigned to
the seen trigraphs.
For instance, if an unseen trigraph /end/ in the word
“dependent“ in Fig. 1 is clustered together with a seen
trigraph /ont/ in the word “context“ (where the central
grapheme /n/ is equal for both trigraphs), the trigraph
/end/ will be later trained with training examples for /n/
in the left context with /o/ and the right context with /t/,
which will be completely senseless for /end/.
There are two solutions to that problem: One solution is
to hold on to the clustering procedure and to make sure
that in our example, the unseen trigraph /end/ receives
the parameters of the monograph /n/. The other solution
is to omit the clustering procedure and to look for other
ways in order to keep the number of free HMM
parameters small. We have chosen this second way,
because it is easier to implement in our system, but we
will investigate the first way in a later stage.
Our approach has been the following: Instead of
introducing all possible trigraphs, we introduce only a
reduced set of selected trigraph models. This set
contains only trigraphs, which are represented at least N
times in the training database, where N has to be greater
than a specified number Nmin. For Nmin = 15 for instance,
133 trigraphs can be found, which have more than 15
examples in the training set (see Tab. 1). Trigraphs that
would have less than 15 examples were left as
monographs. Tab. 1 shows the recognition rate and the
relative error reduction of the system with selected
trigraphs depending on Nmin. It can be seen, that a
maximum relative error reduction of  more than 50%
with a recognition rate of 98.39% for the 1000 word
vocabulary is obtained for Nmin =  25, which delivers 58
additional trigraph models. Just so the test with the
challenging 30000 word vocabulary should encourage
one to apply trigraphs in on-line character recognition
(OLCR) systems: the recognition rate was increased
from 92.47% up to 95.16% with a relative error
reduction of 35.7% in this case.
For verification, we recorded a similar database with the
same text for training and test with a second (female)
writer. We obtained for the 1000 word recognition task
with monographs a recognition rate of  90.32%. With

baseline clustered selected trigraphs
Nmin - - 10 15 20 25 30 35 40

add. models 0 2220 240 133 86 58 40 33 28
accuracy 96.76 90.32 94.62 95.16 97.3198.39 97.85 97.85 97.85

rel. error red. 0 -198.8 -66.1 -49.4 17.050.3 33.6 33.6 33.6

Tab. 1: Recognition rate and error reduction of trigraph-models (1000 word vocabulary).



the use of selected trigraphs and Nmin = 25, we could
increase the recognition rate up to 93.58%, which is
equivalent to a relative error reduction of  34.0%. It
should be noted, that the writer dependent system was
optimized for the first writer and absolute recognition
rates are correspondingly higher. Nevertheless we could
even reach an appropriate error reduction for the second
writer and could demonstrate the reliability of this
approach.

4. CONCLUSION

From these clear results two important conclusions can
be derived. First, that similar to speech recognition the
introduction of context dependent models promise an
enormous potential for improving OLCR-systems.
Second, that a skillful use of trigraphs enables even on
relative small databases amazing gains. Similar results
are anticipated for the writer independent task.
Regarding the variability of handwriting between
different writers, the context of a character could deliver
a valuable additional information for recognition and
gains should be expected to be even higher as in the
writer dependent case. Further investigations of context
dependent models would consider also the use of
bigraphs. The combination of monographs, left- and
right-context bigraphs and trigraphs seems also very
promising. The selection which kind of model is used,
could be based on the number of available examples in
the training set, as described above. Bigraphs would
form an intermediate stage between the large number of
sparsely represented trigraphs and the small number of
frequently represented monographs.
The introduction of trigraphs offers a large potential for
future improvements of OLCR-systems. Trigraphs with
state-clustering could be one important topic on the way
to robust recognition systems, provided that the problem
with unseen trigraphs will be solved. This could either
be done by the use of closed vocabularies or by the use
of non-data-driven clustering algorithms like tree-based
clustering, for instance. The first solution implies the
disadvantage, that the training set must be updated with
the vocabulary, so that the second solution seems to
offer more long term flexibility.

In summary, it should be pointed out, that we believe
that our investigation and the results in this paper is one
of the first systematic investigations of the use of
trigraphs for handwriting recognition, with two
important outcomes: First, the introduction of trigraphs
is not easy and has to be carried out very skillfully.
Secondly - and what is more important: Context
dependent HMMs may represent one of the most

important potentials for future handwriting recognition
systems. We will try to make full use of our discoveries
and we hope to be able to present soon a handwriting
system exploiting the full potential offered through
context dependent character modeling techniques.
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