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ABSTRACT stages [5], namely the symbol segmentation and the symbol

This paper is concerned with the symbol segmentation angacognition stage, both pr_esentgd independent. of eqch qther
pap y g at ICASSP 96 [6][7]. A brief review on the main points is

recognition task in the context of on-line sampled handwrit-"" S . ) S
ten mathematical expressions, the first processing stage tven next. Within this review especially the determination
0

an overall system for understanding arithmetic formulas. the probabllltles is focused be.cause the combination of
jormer independent stages required some changes. In the

Within our system a statistical approach is used toleratin lowing the final decisi i f th bol i

ambiguities within the decision stages and resolving the tf) owm(? € m‘f"t. ECISICt)I”I stage o ? Zyr?/v.?h.set%men a-

either automatically by additional knowledge acquired 'on and recognition system 1S presented. Vithin this pro-
cessing stage the probabilities calculated in the preceding

within the following processing stages or by interaction ; d for determining th ¢ babl bol
with the user. The recognition results obtained by different A4S are used for determining thé most probable Symbo

writers and expressions demonstrate the performance of o pauence base.d on the h"?“.‘dW.”“e” nput. Additionally,
approach. nowledge obtained by a verification concerning the mathe-

matical syntax is used. The recognition results presented at
1. INTRODUCTION the final section of this proposal illustrates the performance

) N . _of our approach and system.
We are accustomed in writing mathematical expressions

containing integrals, fractions, exponents or indices by, APPROACH AND SYSTEM OVERVIEW
hand, but there is no user-adequate solution for enterin
these expressions into a computer. The most natural way
offered by analyzing the handwriting, but next to symbol
segmentation and recognition structure analysis is require
for extracting the meaning of the two-dimensional symbol
positioning [1][2]. But this is just one difference to hand-
written word recognition. Furthermore, the symbol segmen
tation and recognition task within our application is compli-
cated by some additional circumstances: L=(L
e symbols are placed above, below, or even within other
symbols.
* the writing size depends on the symbol as well as on its

%ased on the on-line sampled sequence of strokes
L=(L,,...,L\) @ symbol hypotheses net (SHN) is generated
ontaining symbol hypotheseG(k, g = (L,, ...,Lk+g) of
the handwritten input. Thus, soft-decision segmentation is
done transforming the incoming stroke sequdnce into one
or more different sequencgss()}  of symbol hypotheses
represented by the corresponding path through the SHN.

poly) sequence of strok&s

preprocessing

meaning within the expression (e.g. an upper case ,.X* -’ \\P(G(')IL) Y
has not to be larger than a lower case ,x"). (i-1) ) (i+1) symbol hypothesgs
. " -G G G - generation
Hence, symbol segmentation and recognition systems pre- y % D)
sented up to now require an unequivocal stroke positioning ,’,/ m \“\P(é IG™) Y

[

for segmentation and an unequivocal style of symbol writ- LD D &) D D) <. symbol hypothesg
Y

ing for recognition. Based on these restrictions, within the "~ e classification
processing stages hard decisions are done (similar to sys- Xl"//
tems used for analyzing printed expressions [1]) tolerating : Symbol sequence

almost none of the inaccuracies caused by handwriting5§1):arg(rBaiP(S(i)|G(i))[E>(G(i)|L)] classification

S
3141 sequence of symbqls
In comparison, our soft decision approach presented at and their position

ICASSP 95 tolerates ambiguities within the two processing:igure 1: Statistical approach and system overview.




Each symbol hypotheses is classified by a symbol recogni:ina”y' normalization has to be done o |5(G(i)||_) =1

tion system based on Hidden Markov Models (HMMs) as-transformingP(G(k, g|L) toP(G(k g|L) regarding
signing different symbol recognition resul&k g ¢ to _
each symbol hypothesed(k @  of the SHN. Hence, this Y P(GI|L) = 5. E{G(K @El athiP(G(k @lL)E:l 2)
classification is a soft-decision process again, transforming¢ \vell as pathi)
each symbol hy?j?theses sequemé® into different sym- I5(G(i)|L)/I3(G(j)|L) B P(G(i)lL)/P(G(j)|L) 3)
bol sequencegS . - :

q ST Thus, only the absolute values of the paths through the SHN

Each plecision within th.e seg'm'entation a_n_d recog.nitiorbre influenced but not their relative value among each other.
stage is done by a certain decision probability resulting to

the sequence probabilitieG()|L)  amgSV|G(M) . The L=(L - Ly)
final classification of the symbol sequence is based on these v
probabilities [5]. stroke-spezific
features ot
3. MAIN STAGES OF THE SYSTEM Y Y
stroke pre-| | geometrical features

3.1 Generating a symbol hypotheses net (SHN) [6] > recognition| | betweerl, andL.gq
The soft-decision segmentation by generating symbol hy- Y C G G Ceh Zo(k, Oy
pOtheseEG_(k’ 9 = (Lk' o by g) ,0=g<3 , such as illus- stroke complexities geometrical featurgs
trated by fig. 2, is based on: within (L , ..., Lieg) within (Ly , ..., Liag)
* the unity measur&-(k, ) 0{0, 1}  determined by the

complexities (C,, ..., C, , ) of the strokes. The com- y %k 9 Zok 9y

plexity categorizatiorC, 0{ G, C;, C.}  of each stroke Z(k @ =Zc(k 9lZg(k Q) 1<ksN-g1<g<3

L, into one of the classes ,PrimitiveC{ ), ,Standard" by usingZ, andZ;: 0< P(G(k glL)< 1

(Gs) or ,Complex* (C. ) is done by analyzing stroke- Y

specific features. P(G(k 0)IL) by P(G(K, g)IL)
* the unity measureZg(k, g of the strokes within k<kOK+g=2k1l<g<3

G(k, @, which is determined in several steps. First, by

analyzing geometrical features between each stroke normalization

pairs L, andL,, ., , the two by two unity measures

Zp(k, @), 1<k<N-g, 1<g<3, are calculated. For Y{G(k 9, P(G(k 9IL)}

this calculation, knowledge obtained by a stroke pre-recfigure 2: Detail view of the SHN generation stage.
ognition stage is used additionally. Next, the two by two

unity measureZp(k, ) are combined in a certain man-3-2 Symbol hypotheses classification
ner resulting to the unity measufg(k, g)  of the strokeEach elemenG(k,g of the SHN is regarded as a possible
sub-sequencgl,, ....L,, ) 1<g=<3 . symbol of the handwritten input and therefore has to be ap-

The overall unity measurg&(k g  of the strokes within the plied to the symbol hypotheses classification system [5].

symbol hypothese&(k, @ 1<g<3 ,isdetermined by theAs illustrated in fig. 3, for eaclG(k g preprocessing is
product of Z~(k, @) andZ5(k, 9) . By using two thresholds done first, correcting the slant and slope of each symbol hy-
Zy andZ, ,Z(k g is transformed t®(G(k g|L) repre- potheses as well as extracting parameters necessary for size
senting a probability measure that the stroke sub-sequenegd position normalization. Next, each symbol hypotheses
(L s Ly o) is @ symbol of the handwritten input. The is applied to a pre-recognition stage which is almost identi-
determination of the probability measufG(k 0)|L)  cal the stage used already for generating the SHN. However,
(strokeL, represents a symbol by itself) is done by analyzthis time pre-recognition is done for separating the symbols
ing the probability measures of all symbol hypothesesDot", ,Minus*, and ,Fraction* from the remaining sym-
G(k @, 1<g<3, concluding stroke., . bols of the alphabet [6]. This separation is necessary be-

Each symbol hypothesé®(k, g  Wil(G(k g|L) >0 is Cause no Lwriting” is done for a ,Dot* and the distinction
represented within the net (an example is given in fig. 4), th@etween ,Minus®and ,Fraction”, both represented by a hor-

probability P(G(i)|L) of the path  through the SHN is de- izontal line, requires contextual knowledge. Within the
fined by: symbol hypotheses pre-recognition stage ambiguous recog-

- . nition results between the symbols ,Dot* and ,Minus” as
PGO|L) = [T PGk gIL). (1)  well as ,Minus* and ,Fraction“ are tolerated. Symbol hy-
(G(k g U pathi) potheses rejected by the pre-recognition stage, i.e. symbol



hypotheses not representing one of the above named syr8:3 Symbol sequence classification

bols, are applied to a HMM-based classification system P"®he information available at this final decision stage con-

sented in [7]. sists of the probabilitie®(G(k g|L) obtained by generat-
G(k 0 ing the symbol hypothes&xk,g and, such as illustrated in

fig. 4, the probabilitie$(G(k 9|k g J) obtained by their

recognition.

SkgdO{0-7}, _
1<d<?2 pre-recognitio

HMM-based
classification syste

{S(k g 9. P(G(k 9IS(k g 9)}

L T S) e wld)
N 1 1

=1

P(G(k 91S(k g 9) by eq. (S)y

Figure 3: Overview of the symbol hypotheses classifica- il T F 51 o | 5 '
tion stage, a detail view of the HMM-based clas- P(G(k 9ISk g J) = l
sification system is given in [7]. P(G(k 9|1S(k g a+1)"| (] LI sl Icl |w

Three different feature vector sequen{:(aéF))G(K Y ,Figure 4: Information available for the final symbol se-
FO{O,V, H} are extracted by the symbol hypotheses quence classification: an example containing the
G(k g, one of them =0 ) generated by analyzing the top-3 symbol recognition results to eastk, g

';Emporalltmforrr;ﬁthn during ]:/vtrr;tmg, _tthe relznalnlnght\;vo tby Using the elements of the generated SHN, the decision cri-
e result (i.e. the image) of the writing. For each featur erion given in fig. 1 can be transformed to:

vector sequence consisting idf)  feature vectors the gen-
eration probabilityP((XP)g g |)\(Q) is calculated using S= argrr)1a>{ [ P(kgaIG(k)P(G(kAIL]. (7)

the Viterbi algorithm within the semicontinuous HMMs s (kg 9 Dpathi)

)\(g representing the symbo&  of the alphabet. Using the Bayes theorem and assuming, that all ,a-priori“-

" . iliti (7 Its in:
The symbol recognition resu{ k g1) as well as its alter- probabilities are constants, eq. (7) results in

nativesS(k g ¢, d>1 , are determined by a weighted multi- %1) = Ps )

plication of the single generation probabilities, each of them arg[r)1a>{ k.0 UM PGkIIS(kg g)BGkIIL) ], (8)
additionally normalized to the number of feature vectors: S’ G &kgdOpathj) _
Rs=P(G(k 9), R=P(Ik g %), N)=N(k g g Tpathj).

wiF)
Sk g dg= argmax [ [ P((X(F))G(K 9 P\(g) ] 4) Focusing the left term within this decision criterion, either
= {S( ks(gklé (HF)?{O’ V. H long or short paths (small or large numbef) of symbols
o Sk g d within the pathj ) through the SHN will be pre-
ferred depending on the relation of the ,a-priori€g* and
The corresponding probabilitig¥(G(k g[S(k g d)  are de- R,. Within the right part, always short paths will be pre-
termined by changing thergmax to themaxoperator. ferred caused by the normalization done during the symbol

For homogeneity, a generation probability analogous to th@ypotheses generation and classification. Hence, normaliza-

HMM-based symbol classification is assigned to the prelion is done to the number of elemehd)  within the path

recognized symbols by: ii;;l)engﬁﬁgrr]i%“rﬁhe La-priories” and resulting to the final de-
P(G(k IIS(K 9D gy gy 1 '

“m _

wO=1/(210) wM=1/ (a1 Wy, wt=1/ (a1 )y .

= (5) _
nskanang, p Ak Ik gB) . argmax [N% Pk g 96k PGk I } )
g g O pathj
In the case of an ambiguous pre-recognition result, the gen- D,{_.S“_‘ §WD

eration probability of the corresponding recognition alterna-ina|ly, a verification concerning the mathematical syntax
tive Sk g2) , Xk g2)0{ [J-, /} , is determined by using & pased on the number of parentheses, brackets, braces (a left
very small but positive delta probabiliyP one requires a right one of the same kind and reverse) and
P(G(k AIS(K 925 g2y - 1y, Sk 92)% Sk g1) power symbols (always by pairs) is carried out. Recognition

(6) results failing this verification are considered as invalid.
= P(G(k 9ISk 91)| g g1 .y — AP AP — +0. g



4. RECOGNITION RESULTS AND DISCUSSION hypotheses5(k, 9 underlaying the symbols recognizer re-

For the recognition experiment nine writer contributed fivesu”S Sk gl) within the. seqqencﬁ: coincide with the
. ) ) ) ymbols of the handwritten input). Furthermore, the re-
versions of 17 different expressions using each symbol o o .
. orded symbol recognition errors are mainly caused by a
the given alphabet (currently 84 symbols). The number of . .
s . : ix-up of upper and lower case letters having the same
symbols within the expressions are ranging from at least 1
. . ape [7].
up to 45 symbols, on average an expressions consists of
symbols. In comparison to this number, word recognitiong
means recognizing 5 characters on average [8].

CONCLUSIONS

Withi . . he 10 babl Though the average symbol segmentation and recognition
Ithin our recognition experiment the most proba ©rate obtained by our system is more than 95%, ,only" 44%

(m) -
SYmbO'_ se.quen'ceS; . m<10 ; are gengrated by the dec'of the mathematical expressions of our test data set are rec-
sion criterion given in eq. (9) without using any language

ognized completely error-free. This problem is based on the
model (a very powerful knowledge source for the recogni- g P y P

: . -9 quite large number of symbols within an expression as well
tion of handwritten words or speech) or any symbol dlstrl-q d 4 P

bution k ledae b i1a the k led brained by th as on the missing of a language model usable for mathemat-
ufuon Knowledge ut u's'lng.t e knowledge obtained by thg expressions. By displaying the 10 most probable recog-
quite simple syntax verification.

nition results to the user for selection, the expression recog-

Recognition rate of the expressionsgﬁg?) nition rate raises to 72% by using this kind of interaction.
" Thus, next to the combination with the structure analysis
m=1| m<2 | ms3 | m€4 |m<10 system presented in [2], another task is the implementation
Average: 44% 56% 60% 63% 7204  of a pen-based user interface enabling the user to make cor-
Writer-dep] 28% - | 39% - | 40% - | 45% - | 54% - rections exactly at the error position(s) either by choosing
range: 68% | 79% | 84% | 84% | 87% recognition and/or segmentation alternatives or by re-writ-
Expr-dep.| 2%- | 4%- | 11%- | 11%- | 16%-| "9 Symbols.
range: 91% | 96% | 96% | 96% | 100% 6. REFERENCES
Table 1: Average recognition results and their ranges de- ) )
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Figure 5: Some examples from the expression data base.
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