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ABSTRACT

One of the most important tasks of automatic tool
monitoring systems for CNC-lathes is the supervision
of a tool's wear. Considering the state of wear and
the actual working process (e.g. rough or �nish turn-
ing) it is possible to exchange a tool (or only the in-
sert) just in time, which o�ers signi�cant economic ad-
vantages. This paper presents a new method to esti-
mate two wear parameters by means of arti�cial neural
networks (multilayer perceptrons or time-delay neural
networks). The input parameters of the networks are
process-speci�c parameters (like the feed rate or the
depth of cut) and characteristic coe�cients extracted
from signals measured with a multi-sensor system in
the tool holder.

1. INTRODUCTION

The determination of a tool's wear is one of the most
important tasks in the area of monitoring chipping pro-
cesses [1]. The importance of this task is implied by the
expected economic advantages. On the one hand, it is
possible to replace worn cutting tools in time (consid-
ering the actual working process, e.g. rough or �nish
turning). This measure guarantees products of higher
quality with a certain maximumroughness of the work-
piece surface. On the other hand, a precise exploitation
of the tool's lifetime (usually in the range of some min-
utes) causes a signi�cant reduction of tool costs.

Modern CNC-lathes provide several tools with throw-
away inserts attached on a rotatable turret (see �g. 1).
An extensive description of metal cutting processes can
be found in [2].

If no monitoring systems are used, tools are mostly ex-
changed precautionary, e.g. after the �rst half of the
average operational lifetime of a tool (corresponding
to the operator's know-how). Presently used commer-
cial tool monitoring systems have some serious disad-
vantages like causing false alarms and many reactions

being not transparent and understandable to the op-
erator [1]. Results of surveys show that many of these
systems are disconnected. Actual approaches use fuzzy
systems, neural networks or combinations of both for
a classi�cation of wear (e.g. in `new', `half worn' and
`worn') or a continuous estimate of characteristic pa-
rameters (see e.g. [3, 4, 5]). However, these methods
are not marketable up to now due to unsu�cient gen-
eralization capabilities (mostly the use is restricted to
a small range of process-speci�c parameters).
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Figure 1: Tool holder with insert

This paper presents a new method using neural net-
works for an estimate of two continuous parameters
describing the wear on the major and the minor 
ank of
an insert. For that estimate the cutting process needs
not to be intercepted. The method di�ers from oth-
ers mainly in the variation possibilities for the process-
speci�c parameters and in a dedicated pre-processing
of the input parameters of the neural networks thus
leading to improved results. Furthermore, one of the
parameters has not been estimated so far. Results are
shown for cylindrical turning processes, the most fre-
quently used process type.

2. INPUT AND OUTPUT PARAMETERS

A tool's state of wear is in
uenced e.g. by abrasion
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Figure 2: Wear of an insert: photographic and schematic representation (
attened)

or erosion on di�erent faces of the insert or by tiny
outbreaks at brittle cutting edges. Two parameters
were de�ned, which describe the width of wear land at
the major and the minor 
ank of an insert (see �g. 2);
in our series of experiments they have reached values
up to 1.5 mm. Each parameter has been estimated
continuously by a separate neural network.

Signals from sensors in machine tools (even if direct pa-
rameters like forces are measured close to the cutting
process) are disturbed for many reasons, e.g. noise, out-
breaks at cutting edges, chatter (self-exited vibrations).
Therefore only a multi-sensor approach provides su�-
cient information for an estimate of wear. Four sensors
(piezo-electric elements) for the measurement of forces
in the orthogonal cutting, feed and passive directions
(up to 5 kHz) and vibrations (up to 20 kHz) were inte-
grated into the tool holder. With this sensor system, a
large number of experimental cylindrical turning pro-
cesses with more than 30 inserts has been carried out.
Wear parameters have been determined periodically by
means of a microscope and a laser-triangulation sys-
tem.

The variation of static and dynamic process param-
eters in these experiments is given in tab. 1. Work
material has been steel Ck45; other parameters, par-
ticularly those which describe the tool geometry (e.g.
corner radius, clearence and cutting angle or tool cut-
ting edge inclination), have been identical in all exper-
iments. Fig. 3 gives an example for the development
of forces during a tool's lifetime. One insert has been
used in this cylindrical turning process to cut several
workpieces. At the end of the tool's lifetime outbreaks
had occured at the cutting edges.

The input parameters of the neural networks can be di-
vided into two categories. The �rst consists of a great
number of characteristic coe�cients extracted from the
di�erent sensor signals. The second category is com-

posed of the process-speci�c parameters mentioned in
tab. 1.

static parameter

type of the insert CPX: aluminium oxide on hard metal
(substrate and CL4: titanium nitride on hard metal
coating) PS5: titanium nitride on cermet

dynamic parameters

depth of cut 0.8 { 4.0 mm
feed rate 0.15 { 0.5 mm=revolution
cutting speed 200 { 340 m=min
workpiece diameter 22 { 101 mm

Table 1: Variation of process-speci�c parameters
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Figure 3: Development of forces during a tool's lifetime

The coe�cients were selected in account of a thorough
analysis of the experimental data. Coe�cients in the
time domain of these signals for example are the ac-
tual average of the forces, the increase of forces during
the tool's life and the actual lifetime itself. In the fre-
quency domain of the four signals, accumulated energy



coe�cients for the frequency band from 0 to 300 kHz
have been computed. With increasing wear, vibrations
have been found in a frequency band from 3.9 to 4.8
kHz; in addition, frequency shifts and enlarged ampli-
tudes of the oscillations have been observed. Therefore
actual and accumulated energy parameters in di�erent
small frequency bands have been used as coe�cients.

3. NEURAL NETWORK TRAINING

The non-linear dependencies between the coe�cients
and the process-speci�c parameters on the one and the
wear parameters on the other hand cannot be described
by an exact mathematical model. However, based on a
su�cient number of training patterns, neural networks
are able to ignore disturbed or noisy information, de-
tect fundamental interdependencies and approximate
the sought non-linear function (see e.g. [6, 7, 8]). Af-
ter the training, the network is able to adapt itself
on changing process parameters. Especially multilayer
perceptrons are suitable for the processing of continu-
ous input values and the estimate of continuous output
parameters [8].
By means of the experimental data, more than 130
training patterns have been obtained for a supervised
training of the neural networks. Additional 30 patterns
are available for testing the trained networks.
Perceptrons with one hidden layer have been trained in
50000 steps with the standard backpropagation learn-
ing algorithm. The activation function used has been
the non-linear tanh; learning rate and momentum have
been decreased from 0.3 to 0.0375 and from 0.4 to 0.05
respectively.
In order to consider the temporal development of wear
and the position of a single pattern in a pattern se-
quence (corresponding to the lifetime of a single tool),
a sliding window technique with a receptive window of
length four has been used [7]. The training has been
started with 209 neurons in the input and 100 neu-
rons in the hidden layer (21000 programmableweights).
With node and weight pruning methods, e.g. an anal-
ysis of the impact of input parameters on the result of
the estimate, the number of neurons in the input layer
has been reduced to 27 for ww1 and 28 for ww2 [9].

4. RESULTS

To assess the training result and to demonstrate the
generalization capabilities of a trained network, the
network should be tested with patterns which had not
been used for learning purposes before (extrapolation).
Fig. 4 and �g. 5 give examples for the estimate of the
width of wear land on the major and the minor 
ank
during the lifetime of two di�erent inserts (the exam-
ples in �g. 3 and �g. 5 refer to the same insert).

An other assessment criterion is the identi�cation rate
of test patterns with a given acceptable maximum er-
ror. The estimate of wear at an advanced stage, where
small outbreaks at the cutting edge had already oc-
cured, is a di�cult task. However, such a worn in-
sert wouldn't be used any more in a `normal' chipping
process. Therefore a wear criterion of 0.5 mm (i.e.
ww1 � 0.5 mm and ww2 � 0.5 mm) is usually consid-
ered meaningful. Tab. 2 shows the identi�cation rates
with and without this criterion. Applying this crite-
rion, it is possible to estimate the parameter ww1 with
an average error of 33 �m.
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Figure 4: Width of wear land on the major 
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Figure 5: Width of wear land on the minor 
ank

Additionally used analysis methods have been correla-
tion measures or confusion matrices [6, 7]. The coe�-
cients extracted from feed and passive forces as well as
the actual lifetime of a tool have a great in
uence on
the estimate ofww1. For ww2 the coe�cients extracted
from the passive forces are of the greatest importance.
Comparing �g. 3 and �g. 5, it can be stated that the



in
uence of a decreasing workpiece diameter had been
eliminated to a great extent [9].
The comparison of these results with related work is
not easy. A promising and comparable approach is de-
scribed in [3], where an interpolating (and therefore
easier) estimate of the parameter ww1 with a maxi-
mum error of 30 �m had been reached. A result for
the parameter ww2 is not published yet.

maximum without with 0.5 mm
error wear criterion wear criterion

ww1 ww2 ww1 ww2

� 25 �m n.a. n.a. 50% n.a.
� 50 �m 74% 7% 88% 10%
� 100 �m 83% 48% 92% 65%
� 150 �m 93% 59% 100% 80%
� 200 �m 97% 74% 100% 90%
� 250 �m 100% 81% 100% 95%
� 300 �m 100% 85% 100% 100%
� 400 �m 100% 89% 100% 100%
� 500 �m 100% 93% 100% 100%
� 750 �m 100% 96% 100% 100%
� 1000 �m 100% 96% 100% 100%

Table 2: Identi�cation rate for ww1 and ww2

5. CONCLUSIONS AND OUTLOOK

As a general result, it can be stated that neural net-
works are an outstanding method for monitoring a
tool's wear in CNC-lathes. The approach could be
transfered from turning to other chipping processes
with geometric tools (e.g. milling or drilling).
The continuous estimate of two parameters allows to
consider the state of wear in mathematical models de-
scribing the in
uences of static and dynamic process-
speci�c parameters (incl. wear) on the three mentioned
forces. Using these models, it is possible to compute
dynamic thresholds, which may be compared with mea-
sured forces in order to ful�ll two other important tasks
of tool monitoring systems: the detection of collisions
(unintended contacts between the tool and parts of the
machine or workpiece causing rapidly increasing forces)
and the identi�cation of small outbreaks at the cutting
edges of a tool (or complete breaks) [10].
Our actual and future research deals mainly with tests
of other neural network paradigms (e.g. Elman- or
Jordan-networks, ART (Adaptive Resonance Theory)
architectures or time-delay neural networks) and learn-
ing methods. First attempts with time-delay neural
networks (TDNN, see e.g. [7, 11]) showed promising
results: again, it was possible to reduce the number of
input parameters signi�cantly. Fig. 6 gives an example
for an estimate where a TDNN with only three input
neurons has been used (compare to �g. 4 which refers
to the same insert).
Furthermore, we investigate additional improvements
of the pre-processing of the input parameters, e.g. by

aligning the input values with respect to the afore men-
tioned force models.
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ank II
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