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ABSTRACT

The paper presents principal component analysis (PCA)
approach to the reduction of noise contaminating the data.
The PCA performs the role of lossy compression and de-
compression. The compression/decompression provides the
means of coding the data and then recovering it with some
losses, dependent on the realized compression ratio. In this
process some part of information contained in the data is
lost. When the loss tolerance is equal to the noise strength,
the noise and the loss tolerance are augmented and the de-
compressed signal is deprived of noise. This way of noise
�ltering has been checked on the examples of 1-dimensional
and 2-dimensional data and the results of numerical exper-
iments have been included in the paper.

1. INTRODUCTION

The elimination of the noise is an important subject since
practical digital images are often degraded in some manner
to some extend and need to be restored to improve their
quality. The objective of removing the noise is to obtain
the recovered image in such a way that it resembles the
original (noiseless) image as closely as possible.

There are many di�erent �ltering algorithms for noise
removal, following from the Wiener or Kalman �lter theory
[10, 11]. However to get good results of �ltering using these
methods we have to know in advance the spectral properties
of the noise free data and the noise itself.

The paper will present the random noise reduction tech-
nique which does not need to know in advance the spectral
properties of the data. It is based on the application of the
compression and decompression (reconstruction) of the no-
isy data. The lossy compression/decompression technique
provides the means of coding the data and then recovering
it with some losses, dependent on the realized compression
ratio. Some part of information contained in the data is then
lost. This principle will be applied in the paper to reduce
the random noise, distorting the data. When the loss tole-
rance is equal to the noise strength, the noise and the loss
tolerance are augmented and the decompressed signal is de-
prived of noise. In this way the compression/decompression
technique provides the �ltering of the data.

This method of noise elimination has been checked on
the examples of 1-dimensional and 2-dimensional data and
some chosen results of numerical experiments are included
in the paper. The important advantage of the approch is its

universality. The neural network trained on the example of
one data set can be applied to noise removal of the other sets
of data of similar distortion. Thanks to the generalization
ability of the neural network the quality of such operation
is reasonably good.

2. PRINCIPLE OF THE RANDOM NOISE

FILTERING USING COMPRESSION AND

DECOMPRESSION

Let fn and rn denote the sample sequences composed of n
independent samples of the image function f and random
variable r, respectively. These sequences can be mathema-
tically presented as

f = [f(0); f(1); � � � ; f(n� 1)]T

r = [r(0); r(1); � � � ; r(n� 1)]T

Let f̂n = fn+ rn denotes the sequence of data fn corrupted
with noise, characterized by the vector rn. Let us introdu-
ce the notion of strength of the noise, understood here as
the norm k rn k, where di�erent kinds of norm may be
applied in this de�nition, e.g., euclidean, L1 or L1 norms.
To estimate the noise strength we have followed the heu-
ristic method of Natarajan [5], where many runs of com-
pression/decompression algorithms of various compression
losses, measured as Peak - Signal -to- Noise - Ratio (PSNR)
have been tried. After all runs one has to plot the com-
pression ratio Kr versus PSNR values to obtain the rate -
distortion characteristic of the signal. If we create the plot
for the noisy signal we notice that for the allowable losses
higher than the noise strength, the plot follows the rate -
distortion characteristic for the noise free signal. On the o-
ther hand at the allowable losses less than noise strength,
the plot follows the rate - distortion characteristic of the no-
ise itself. It means that the noise dominates in this region.
At the point of PSNR corresponding to the strength of the
noise the plot of the noisy signal shows the "knee point",
that is a point at which the slope of the curve changes ra-
pidly. The precise determination of the knee point can be
obtained by drawing the second derivative characteristic.
The point of PSNR at which the second derivative attains
its maximum is the measure of the noise strength.
The elimination of noise is achieved in the algorithm thro-

ugh the lossy compression and then decompression of the
noisy signal f̂ . At high compression ratio Kr the noise in-
troduced by coding/decoding plus additional random noise



contaminating the data is relatively high. At small compres-
sion ratio Kr both signal and noise are passing throught the
�lter almost unchanged and no e�ect of �ltering is observed.
To obtain good results of noise elimination we have to �nd
some compromise point, at which the attenuation of noise is
high enough and coding/decoding error is on the acceptable
level. This is the breaking point of the rate - distortion cha-
racteristic, corresponding to the PSNR value equal to the
strength value of the noise, corrupting the data. Knowing
the value of the noise strength it is enough to adjust the
compression ratio Kr corresponding to this point.

3. NEURAL PCA TECHNIQUE OF

COMPRESSION

The practical solution of �ltering the random noise has be-
en obtained by the authors through the use of PCA neural
network [1, 2, 4], applied here as the coding/decoding me-
ans. The PCA is the statistical method de�ning the linear
transformation y = Wx, transforming the stationary sto-
chastic data x 2 RN into the vector y 2 RK using the
matrix W 2 RK�N at K � N in such a way that the o-
utput space y of the reduced dimension preserves the most
important information of the input space x. Denote by Rxx

the expected value of the correlation matrix Rxx = E[xxT ]
of the input vectors x and by �i the ith eigenvalue of this
matrix. The eigenvector wi corresponding to �i ful�lls the
relation

Rxxwi = �iwi

The eigenvectors corresponding to all eigenvalues are or-
thogonal to each other. If we arrange the eigenvalues in the
decresing order and de�ne the matrix W in the form

W = [w1 w2 � � � wK ]

where each column vector wi = [wi1 wi2 � � � wiN ]
T , then

the aim of PCA transformation is the iterative determina-
tion of the principal eigenvectors wi (i = 1, 2, ..., K) of
the correlation matrix in such a way that the expected va-
lue E

�
k wT

i x k
2
�
is maximized. The determination of the

principal vectors is performed only once. The reproduction
of the data, x̂, may be then done to di�erent accuracy ta-
king into account di�erent number of principal vectors for-
ming the matrixW. This can be achieved by using relation
x̂ =WTy. The higher the number of principal vectors the
better accuracy of reproduction, higher value of PSNR and
lower compression ratio. So generaly we may summarize,
that the idea of PCA is to convey the most information
about a set of a data given a limited number of linear de-
scriptors. High dimensional data is projected onto a smaller
number of dimensions, adjusted in a way to enable the re-
covering of the data to some limited accuracy.
There are di�erent methods of estimation of principal

components [1, 2, 3, 4, 8]. In practice we have implemented
the extended or modi�ed Oja's learning rule [4, 2], according
to which the results are obtained iteratively, where k-th
iteration for eigenvectors is described by

wi(k+ 1) = wi(k) + �i(k)yi(k)	[ei(k)]; (1)

In this relation the index i means the ith neuron and k { the
iteration. The variable yi is the output signal of the neuron,

�i { the learning rate and 	 { the activation function. The
recursive relations describing the variables are given in the
form

ei
4

= ei�1 �wiyi

yi
4

= w
T
i ei�1

e0(k)
4

= x(k)

for i = 1, 2, ..., K. The vector 	(e) represents the vector of
suitable activation functions

	(ei) = [	i(ei1);	i(ei2); :::;	i(ein)]
T

The most often used forms of activation functions are tanh
	i(eij) = tanh(eij=�) or the polynomial 	i(eij) = e2p+1ij

for robust nonlinear PCA and linear form 	i(eij) = eij for
the standard linear PCA (which is optimal only for Gaus-
sian distribution of noise).
The choice of activation function depends on character

of the noise, i.e., its statistical distribution. In the special
case 	(e) = e the learning rule (1) is equivalent to the
well known Sanger's algorithm [1,2] but it is much more
numerically stable since the error accumulation is not as
signi�cant as in the Sanger rule.
The presented above learning rule is local assuming that

the principal vectors are updated sequentially one after one,
starting from the �rst (biggest one). The local character of
the algorithm is a great advantage, since all calculations are
done without inverting the whole system of linear equations
and at the time of calculation only small part of information
needs to be stored.
In the learning algorithm the key role plays the learning

rate �i(k) � 0. If the learning rate is too large, the algorithm
is numerically unstable. Otherwise if it is �xed or exponen-
tially decreasing parameter, the convergence speed of the
algorithm may be very slow. Applying RLS (Recursive Le-
ast Squares) technique, it can be shown that the learning
rate can be updated as follows

�i(k + 1) = [
�

�i(k)
+ [yi(k)]

2]�1 (2)

with
�i(0) = [�2(ei�1)]

�1 (3)

where �2(ei�1) is the variance of the input signals), and
with 0:9 < � � 1 representing the forgetting factor. This
form of compression/decompression has been applied in
practical solution of the noise �ltering problem of the data.

4. RESULTS OF NUMERICAL

EXPERIMENTS

The experiments checking the �ltering ability of the propo-
sed approach, have been carried out using both 1-D (the
curve) and 2-D input data (the image). The data have be-
en splitted into equal frames, forming the 1-D vectors. The
neural network forming PCA has been trained using lear-
ning data corrupted with the random noise of either uniform
or normal distribution of certain strength. Di�erent levels
of noise have been checked and the results of �ltering have
been assessed as good. Fig. 1 presents the results of �lte-
ring the 1-D data corrupted by the random noise of normal
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Figure 1. The results of PCA application to the elimina-

tion of the noise from the learned image; upper - the curve

corrupted with the noise, lower - the regenerated curve

distribution of the SNR value equal 20dB (Fig. 1a). The
original curve was described by the relation

f(n) = sin(300n + 6cos(60n))

It was plotted for the time t changing from t = 0 to t = 0:22
with the resolution of 0:0001. The length of the frame assu-
med in the experiments was equal 15. The neural network
has been trained using modi�ed Oja learning rule (1) with
the recursively adjusted learning coe�cients given by (2).
After training the rate-distortion curve of the network has
been plotted and on the basis of this the optimal compres-
sion ratio, corresponding to 3 principal components have
been chosen. Fig. 1b presents the �ltered curve, that is the
curve after the compression and decompression using PCA
with 3 principal components. As it is seen from the results
the quality of noise elimination is reasonably good. The no-
ise has been greatly supressed and the recovered curve only
slightly di�ers from the original one. Fig. 2 illustrates the
noise removal ability of the neural network. Fig. 2a presents
the di�erence of the original and the distorted curves while
Fig. 2b shows the di�erence between the original and reco-
vered curves. After the noise removal the standard deviation
of the error data has been reduced from the value of 0.0481
of the original noise to 0.0144 of the recovered data.
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Figure 2. The error of reproduction of the distorted 1-D

data; the upper curve - the state on the input to the network,

the lower curve - the �nal state after noise reduction

Fig. 3a presents the 2-D image of the forest corrupted in
10% by the additive random noise of uniform distribution.
Adjusting the proper compression ratio Kr, equal in the
experiments Kr � 6, corresponding to 10 principal com-
ponents, we got the results in the form of �ltered image
presented in Fig. 3b. Fig. 4 presents the results of generali-
zation of the learned neural network. The network trained
on the data of Fig. 3 has been used to eliminate noise cor-
rupting the image of Lena of Fig. 4a. The resulting �ltered
image is shown in Fig. 4b. As it is seen the quality of the
regenerated picture is good. It should be stressed that the
presented �ltered image has not been taking part in lear-
ning process, it is the result of the generalization ability of
the trained neural network.

5. CONCLUSIONS

The paper has proposed the PCA based approach to the
elimination of the noise, corrupting the data. According to
the authors the main achievements of the work are:

� new coding/decoding strategy based on robust PCA
neural network in application to noise removal

� the applicability of method to the image �ltering wi-
thout additional knowledge of the statistics of the di-
storting random noise

� the implementation of the developed technique to the
reduction of random noise from the 1-D signals or 2-D
images.

This method has been succesfully checked on many exam-
ples of 1-D and 2-D data proving its good performance on
the images not taking part in learning process, for which
the generalization ability of the neural network has been e-
xploited. This is the important advantage of the approach,
since it makes the method universal, applicable without re-
training of the network to di�erent data sets. The results
of numerical experiments have con�rmed the ability of the



Figure 3. The ability of the PCA neural network to ran-

dom noise removal from the image used in learning: upper

- picture corrupted with the noise, lower - the regenerated

picture

proposed procedure for removal the random noise from the
corrupted data of di�erent strength of corruption.
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