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ABSTRACT

In this paper, we propose the Distortion Sensitive Competitive

Learning (DSCL) algorithm for codebook design in image vector

quantization. The algorithm is based on the equidistortion prin-

ciple for asymptotically optimal vector quantizer after Gersho

(1979) and recently from Ueda and Nakano (1994). The DSCL

is simple and e�cient in that a single weight vector update is

performed per training vector, and the processing speed of the

DSCL on sequential or multiprocessor environment can further

be improved by applying a modi�ed partial distance elimination

(MPDE) method. Simulations indicate that the DSCL outper-

forms some recently proposed neural algorithms, including the

\Neural-Gas" from Martinetz et al. (1993) and the DEFCL

from Butler and Jiang (1996). In combining with the MPDE,

the DSCL is faster than the \Neural-Gas" up to a factor of 45

times on a sequential machine, and yet arrives at better code-

books with the same number of iterations.

1. INTRODUCTION

Vector quantization (VQ) [1] has been applied successfully
in image and speech compression for years. The signal to
be quantized is divided into blocks, and each block is repre-
sented by a vector. A vector quantizer maps each of these
vectors into a �nite set of represetative vectors called the
codevectors. These codevectors are collectively called the

codebook, and according to a distortion measure D
�
!

x;
!

c

�
which measures the error introduced by replacing

!

x with
!

c , they are chosen so as to minimize the average distor-
tion introduced. Since the probability density function of
the source is generally unknown, the codebook is usually
designed with a training set sampled from the source, and
the average distortion is approximated by the distortion in-
troduced onto this training set.

Let us recall the well-known approach in codebook de-
sign, the generalized Lloyd algorithm (GLA) or the LBG,
which was proposed by Linde et al. [2]. The GLA is an
iterative descent algorithm which could be easily trapped
at local optima corresponding to a large average distortion,
especially when the initial codevectors are inappropriately
assigned. Hence, a splitting method was proposed in the
same paper to resolve this problem. Recently, neural net-
works have been applied to codebook design with success.
These algorithms are characterized by being massively par-

allel in nature, adapting the codebook with each presenta-
tion of training vector instead of in batch (as in the GLA),
and less sensitive to initialization than that of the GLA.
Approaches like the soft competition scheme (SCS) [3] and
the \Neural-Gas" [4] have also been proven theoretically for
their global optimality. Generally speaking, the learning of
each training vector in each of these algorithms consists of
some form of competition for winner(s) which then follows
by weight vector(s) update. In situations like massively
parallel realizations on parallel machines or VLSI imple-
mentations, the competition process dominates the overall
processing time while the weight(s) updating process is done
in full parallelism. In more practical situations like sequen-
tial or multi-processing environments (where the number of
processors is much less than the number of neurons), the
competition process scales linearly (for the best case) with
the number of neurons, while the weight(s) updating has to
be done sequentially on each processor. Hence, the larger
the number of weight vectors update, the longer will be
the overall processing time. In fact, most of them require
the updating of more than one weight vector per training
vector, making their realizations in these environments less
attractive than the GLA, especially when the number of
neurons is large.

In this paper, we propose a new algorithm called the
distortion sensitive competitive learning (DSCL) which is
based on the equidistortion principle from Gersho [5] and
recently from Ueda and Nakano [6]. The algorithm is char-
actersized by single weight vector update per training vec-
tor, hence it is simple and e�cient. To speed up the DSCL
further, we suggest a modi�ed partial distance elimination
(MPDE) method which is an extension of the work from
Bei and Gray [7]. Then we compare the performance of
the DSCL with some existing neural algorithms, and �nally
conclude the paper.

2. THE EQUIDISTORTION PRINCIPLE AND

THE DISTORTION SENSITIVE

COMPETITIVE LEARNING

Let us recall the theoretical analysis given by Gersho [5] on
asymtotically optimal vector quantizer. It is assumed that

the probability density function of the source, p

�
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v

�
, is

su�ciently smooth and the r-th power of Euclidean distance

D
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w

�
=

!x �!w
r (1)



is used, where vectors are in K-dimensional Euclidean

space. Let
n
!

wi

o
be the codebook, then <K is being par-

titioned into f
ig such that 8i 6= j; 
i
T

j = ;,

S
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o
. The

subdistortion of the i-th codevector is given by

Si =

Z

i

D
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�
d
!

x; (2)

and the overall expected distortion is given by S =
P

i
Si.

Then, according to ref. [5], in the limit of large N , a nec-
essary condition for an optimal vector quantizer is that
8i 6= j; Si = Sj . This is usually referred to as the equidis-
tortion principle in optimal vector quantizer design. In the
work of Yamada et al. [8], they considered a more general
di�erence distortion measure which has the general form

D

�
!

x;
!

y
�
= L

�
!

x �
!

y
�
; (3)

where L (�) is an arbitrary function satisfying L
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0

�
= 0

and L
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!y
, where k�k is an arbi-

trary seminorm on <K. They proved that the equidistortion
principle is also applicable to this di�erence distortion mea-
sure. According to the work of Ueda and Nakano [6], the
proof of Gersho [5] was extended so that the equidistortion

prinicple holds even when p

�
!

x

�
composes of multiply dis-

joint distributions.

Recently, a number of approaches based on the equidis-
tortion principle were proposed including the Competi-
tive and Selective Learning (CSL) [6], the Partial Distor-
tion Equivalent Competitive Learning (PDECL) [9], the
Partial Distortion Weighted Fuzzy Competitive Learning
(PDWFCL) [10] and the Distortion Equalized Fuzzy Com-
petitive Learning (DEFCL) [11].

In this paper, we propose a new algorithm called the dis-
tortion sensitive competitive learning (DSCL) which is also
based on the equidistortion principle. Let us denote N as
the number of neurons, then the i-th neuron is associated

with a weight vector
!

wi and a scalar bi. With a training
set available and the distortion measure de�ned according
to (1), our DSCL is described as follows.
Algorithm 1: DSCL

1. Initialize randomly the weight vectors
!

wi(0). Set

bi(0) 1 8i.

2. Do until some termination criteria

(a) Randomly draw a training vector
!

v (t) from the

training set.

(b) Find the winner, k, such that

k = arg min
i

bi(t) �D
�
!

v (t);
!

wi(t)
�
: (4)

(c) Update the weight vector by

!

wk(t+1) =
!

wk(t)��(t)
@D

�
!

v ;
!

w

�

@
!

w

������!
w=

!

wk(t)

: (5)

(d) Update the value of bk by

bk(t+ 1) = bk(t) +D

�
!

v (t);
!

wk(t)
�
: (6)

(e) Set t t+ 1.

Note that Algorithm 1 is quite general in that by chang-
ing (6), we can arrive at some existing competitive learning
algorithms. If bk is not updated, we have the simple com-
petitive learning (SCL). If (6) is replaced by bk(t + 1) =
bk(t) + 1, we have the Frequency Sensitive Competitive
Learning (FSCL) [12]. In the work of Butler and Jiang [11],
the Distortion Equalized Competitive Learning (DECL)
was suggested as a non-fuzzy version of the DEFCL. The
DECL is also bsed on the equidistortion principle, with with

bk(t+1) = bk(t)+
bk(t)P
i
bi(t)

D

�
!

v (t);
!

wk(t)
�
. While both the

DECL and our approach are based on the equidistortion
principle, our approach has the advantage of being simpler,
such that less computation is required to calculate the quan-
tity 4bk(t) = bk(t+1)� bk(t). This simplicity also favours
the hardware realization of the DSCL over the DECL, since
in the DECL, additional circuitries have to be included to
evaluate the global sum

P
j
bj(t) and the division opera-

tion. Another di�erence between the DSCL and the DECL
is the magnitude of 4bk(t). For the DECL, this quantity

is actually scaled by the factor
bi(t)P
j
bj(t)

which can be very

small when the number of neurons is large. Hence, the mag-
nitude of 4bi(t) is generally larger for the DSCL. Owing to
this fact, the performance of the DSCL is less a�ected by
the values of bi(0) than that of the DECL, especially when
the number iterations is small. We will present experimen-
tal results to demonstrate this point in Section 3..

In order to speed up the DSCL (and SCL, FSCL and
DECL as well), we suggest a modi�ed partial distance elim-
ination (MPDE) method extended from the work of Bei and
Gray [7]. With the distance measure as de�ned in (1) for
the case with r = 2 and the vectors in K-dimensional space,
our MPDE is described in Algorithm 2. Note that for the r-
th power of Euclidean distance (for positive r), the MPDE

is still applicable by using b
2=r

i instead of bi.
Algorithm 2: MPDE

1. Set Dmin  b1k
!

w1 �
!

v k2.

2. Set Index 1.

3. For i from 2 to N , do

(a) Set D  0.

(b) Set Limit Dmin

bi
.

(c) Let
!

wi be represented by (y1; : : : ; yK), and
!

v by

(v1; : : : ; vK)

For j from 1 to K, do



i. D D+ (yj � vj)
2.

ii. If Limit � D,

then break this loop and continue with next

value of i.

(d) Set Dmin  D � bi. Set Index i.

4. Terminate the algorithm and return Index as the index

of the best match codevector.

3. RESULTS

We demonstrate the performance of our Distortion Sen-
sitive Competitive Learning in image vector quantization
with r = 2 in (1), using a sub-block size of 4 � 4 pixels.
Each image has 512�512 pixels, hence there are L = 16384
vectors in the training set of each image. The DSCL is
compared with the FSCL [12], the \Neural-Gas" [4], the
DEFCL and the DECL [11]. The quality of the codebook
so generated is compared based on the signal-to-noise ratio
(SNR),

SNR = 10 log

P
!

v2S

!v
2

P
!

v2S

!v �Q

�
!

v

�2
; (7)

where Q
�
!

v

�
is the reconstructed vector of

!

v , and S is the

training set.

The learning rate decreases linearly with number of learn-
ing steps t, i.e. �(t) = 1� t

kL
, where k is a constant specifying

the learning time. The sizes of the codebook N in our exper-
iments are 32; 64; 128; 256; 512; 1024. For the \Neural-Gas",

the neighbourhood function is chosen as h�(k) = e�
k
� where

�(t) = �i(
�f
�i
)
t
kL , according to [4]. According to our anal-

ysis, we observe that the case with �i =
N
8
and �f = 0:01

gives the best performance, hence these values are adopted.
For the DEFCL, we choose the value of m = 1:2 since our
analysis suggested that this gives the best codebook in all
cases.

In our experiments, we chose k = 10, and the SNR of
the resulting codebooks from each of the algorithm for each
value of N with di�erent images together with the corre-
sponding processing times are tabulated in Table 1. It is
obvious that for a small codebook size, the codebooks have
similar quality, while for large ones, the proposed DSCL
and the \Neural-Gas" outperform others. Note that in our
experiments, it has been demonstrated that the DECL per-
forms better than that of the DEFCL, although the contrary
was concluded in ref. [11]. Although the DECL di�ers from
the DSCL by a factor in the updating equation of bi in (6),
it is observed that this di�erence could lead to a degraded
performance. In terms of processing speed, our DSCL is
fastest while the DEFCL is the slowest. Note that in the
implementations of the DSCL, the DECL and the FSCL,
the MPDE is applied. On the other hand, the idea of the
MPDE cannot be applied trivially in the implementation
of the DEFCL and the \Neural-Gas". Experimental results
indicate that the MPDE can improve the processing time

by three times, while the DSCL is up to 45 times faster than
that of the \Neural-Gas". Hence, even when the e�ect of
the MPDE is removed, we still have a speed di�erence of
15 times.

Furthermore, we compare the adaptation speed of the
three algorithms { the DSCL, the DECL and the \Neural-
Gas". We consider an algorithm having higher adaptation
speed than another one when it produces higher quality
codebook given the same number of training steps. We
compare the case when N = 1024, and for the two im-
ages \Lena" and \Ti�any". For each image, each of the
algorithms was executed for the value of k ranging from 1
to 20, and the resulting plots are shown in Figure 1. Ob-
viously, the DSCL has higher adaptation speed than the
other two, except when k is small (� 2) and in this case the
\Neural-Gas" has resulted in better codebooks. From the
plots it is clear that in order to obtain a codebook with the
same SNR, the DECL requires at least twice the number of
steps than our proposed DSCL. For example, in the case of
\Lena", the codebook quality for k = 3 from the DSCL is
better than that from the DECL when k < 10. Hence, it
is obvious that an extra factor of the updating equation of
the DECL leads to a reduction of its adaptation speed.

4. CONCLUSIONS

In this paper, we propose the Distortion Sensitive Compet-
itive Learning (DSCL) algorithm based on the equidistor-
tion principle for asymptotically optimal vector quantizer.
Comparing results with existing neural algorithms indicate
that the DSCL is simple, fast and e�cient in sequential en-
vironment. In combining with a modi�ed partial distance
elimination (MPDE) method for speeding up the compet-
itive process, the DSCL is faster than the \Neural-Gas"
algorithm by up to 45 times, and yet with better codebook
quality.
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N Approach \Lena" \Ti�any" \Baboon" \Peppers"

DSCL 22.85 21.90 16.74 22.32
DECL 22.82 21.94 16.72 22.28

32 FSCL 22.80 21.31 16.69 21.98

DEFCL 22.89 21.84 16.66 22.31
NGas 22.85 21.94 16.73 22.17

DSCL 23.94 22.76 17.36 23.50
DECL 23.92 22.80 17.35 23.53

64 FSCL 23.72 22.49 17.29 23.19
DEFCL 23.96 22.80 17.25 23.53

NGas 23.89 22.76 17.36 23.39
DSCL 25.06 23.71 17.95 24.59

DECL 25.06 23.67 17.98 24.58

128 FSCL 24.59 23.23 17.89 24.10
DEFCL 25.05 23.61 17.85 24.60

NGas 24.98 23.62 17.96 24.50
DSCL 26.14 24.60 18.61 25.67

DECL 26.12 24.56 18.59 25.57
256 FSCL 25.59 24.08 18.49 25.13

DEFCL 26.12 24.51 18.44 25.56

NGas 26.06 24.51 18.60 25.67
DSCL 27.30 25.67 19.32 26.83
DECL 27.26 25.57 19.31 26.72

512 FSCL 26.61 24.92 19.14 26.00
DEFCL 26.93 25.32 19.09 26.39
NGas 27.24 25.58 19.29 26.78
DSCL 28.75 27.04 20.22 28.17
DECL 28.29 26.83 20.18 27.73

1024 FSCL 27.65 26.03 19.96 27.14
DEFCL 27.17 25.89 19.79 26.58

NGas 28.65 26.78 20.18 28.08

Table 1-a. SNR of the codebooks (NGas = \Neural-

Gas")

N Approach \Lena" \Ti�any" \Baboon" \Peppers"
DSCL 20.67 23.92 27.82 20.72
DECL 20.28 21.19 24.76 21.35

32 FSCL 20.70 21.89 24.89 22.02
DEFCL 421.93 422.16 452.83 421.99
NGas 365.88 364.35 372.54 363.81
DSCL 31.75 30.92 40.80 30.18

DECL 28.79 31.73 38.13 29.72
64 FSCL 30.05 31.91 37.61 29.23

DEFCL 831.87 830.26 839.99 840.39
NGas 730.25 734.04 741.61 733.92

DSCL 46.69 51.30 66.71 46.13

DECL 50.58 49.60 62.95 46.28
128 FSCL 46.53 53.82 65.90 45.90

DEFCL 1666.02 1668.64 1684.58 1665.81
NGas 1428.58 1406.47 1445.70 1409.65

DSCL 78.57 85.88 111.23 78.57

DECL 79.94 85.95 126.19 78.86
256 FSCL 82.24 90.84 112.24 80.21

DEFCL 3340.49 3347.92 3387.43 3356.42

NGas 3035.65 2993.41 3042.21 2975.51

DSCL 144.51 151.63 202.19 139.53
DECL 146.22 165.69 199.32 150.22

512 FSCL 151.14 164.06 201.24 149.26
DEFCL 6950.41 6655.87 6702.02 6703.80

NGas 5817.67 5891.50 5882.94 5971.84

DSCL 265.15 298.77 384.31 266.94
DECL 283.48 290.50 376.66 293.07

1024 FSCL 294.80 324.80 379.60 301.28
DEFCL 13432.70 13470.40 13657.40 13407.60
NGas 12186.70 12962.90 12604.40 12220.40

Table 1-b. Processing Time in seconds (NGas =

\Neural-Gas")


