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ABSTRACT

In this paper, a 3-D Cellular Neural Network (CNN) is ap-
plied for restoration of degraded images. It is known that
regularized or Maximum a Posteriori estimation based im-
age restoration problems can be formulated as the minimiz-
ation of the Lyapunov function of the discrete-time Hop�eld
network. Recently, this Lyapunov function based design
method has been extended to the continuous-time Hop�eld
network and to the continuous-time CNN operating either
in a binary steady-state output mode or in a real-valued
steady-state output mode. This paper considers 3-D CNN
in the binary mode, which needs eight binary (nonredund-
ant) neurons only for each image pixel thus reducing the
computational overhead, and introduces a hardware anneal-
ing approach to overcome bad local minima problem due to
binary mode of operation and nonredundant representation.

1. INTRODUCTION

Image restoration refers to the problem of estimating the
ideal image from its blurred and noisy rendition. Recently,
there is a surge of interest to solve image restoration prob-
lems using neural networks [1]-[6].

The earliest attempt, in this regard, was by Zhou et.al.
[1] where equivalencies between the image restoration cost
function and the Lyapunov function of the discrete-time
Hop�eld network are investigated. However, their net-
work has negative self feedback connection weights, thus,
they introduced an energy function check-up step which
is ad hoc, time consuming solution. To overcome negat-
ive self-feedback problem, Paik and Katsagellos [2] sugges-
ted several modi�cations of the discrete Hop�eld network.
Figueiredo and Leitao [3] investigated neural implementa-
tions of iterative restoration schemes.

More recently, there have been attempts [4]-[6] to include
CNNs [7] for image restoration problems. �Unal [4] devised
an algorithm which splits bit images and treats every bit
image separately. The interrelations among bit images are
omitted, however. In another attempt, Miller et.al. [5]
formulated the image restoration problem as solving linear
equations by means of di�erential equations, and imbed-
ded those equations into the dynamics of CNN with linear
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output function. In [6], both continuous-time Hop�eld Net-
work and continuous-time CNN operating either in a bin-
ary mode of steady-state output or in a real-valued mode of
steady-state output were introduced for restoration of noisy
and blurry images, and a comparison was made over the ex-
isting neural network algorithms. Among those networks
considered, the 3-D CNN operating in the binary mode
needs only eight neurons to represent 256 gray levels for
each pixel. However, since nonredundant (eight-bit) neur-
ons were used, undesirable local minimum solutions were
obtained precluding the e�ciency of the algorithms under
consideration. If redundant neurons, namely, 256 neurons
were used to represent each pixel gray level as had been
done in [1]-[3], one may argue that better solutions may
have been obtained, since, for such a case there are redund-
antly many global optimal solutions, and, thus there is a
greater chance to end up with one of them. Indeed, no
problem concerning the quality of the solutions had been
reported [1]-[3]. This simple sum representation [8] has ob-
viously a quite of computational burden. It is therefore
better to insist on nonredundant representation and try
to improve the quality of the solutions obtained through
nonredundant representation. In this paper, we therefore
propose a hardware annealing method [10]-[11] associated
with a graduated nonconvexity approach to cope with the
bad local minimum problem.

This paper is organized as follows: In Section 2, the 3-
D CNN model considered in this paper is brie
y described.
In Section 3, we formulate our graduated nonconvexity type
algorithm which ameliorates the quality of �nal solutions.
In Section 4, experimental results are given to support our
reasoning. Finally, in Section 5, we draw our �nal conclu-
sions.

2. CELLULAR NEURAL NETWORKS

A 3-D continuous-time CNNwhich was originally developed
as a 2-D array of �rst-order dynamical cells [1] and then
generalized to the n-D, multi-layer, higher-order case [9] is
described in (1). The cells in a CNN are connected only
to the cells in their nearest neighborhood of size r, i.e.,
Nr(i), de�ned as : Nr(i) = f(̂i) j D(i; î) � r g . Where,
i = (i1; i2; i3) is the vector of integers indexing the cell

C(i), r is the neighborhood size ; and D(i; î) denotes the



metric D(i; î) = maxfji1 � î1j; ji2 � î2j; ji3 � î3jg .
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Where, A, I, w
i;̂i and zi;̂i 2 R are constants. ui , xi , and

yi denotes the input, the state, and the output of the cell
C(i) , respectively. j � j denotes the absolute value function.

It is shown in [7] that if the feedback connection weights
w

i;̂i are symmetric, then CNN is completely stable, i.e., each
trajectory tends, as time goes to in�nity, to one of the equi-
libria. In this paper the input connection weights z

i;̂i are
chosen symmetric for reducing computational costs and so
are the feedback connection weights w

i;̂i for ensuring the
complete stability. The feedback and input template coe�-
cients satisfy the space-invariant property, i.e., w

i;̂i =W
i�̂i

,
z
i;̂i = Z

i�̂i
.

The completely stable CNNs can operate either in the bi-
polar binary steady-state output mode or in the real-valued
steady-state output mode. The �rst mode which is con-
sidered in this paper can be ensured [7] by the constraint
wi;i > A. If this constraint is not satis�ed, then the steady-
state outputs of the cells may take real values now allowing
to process gray-level data by just one 2-D CNN layer. The
latter mode of operation is used in [5]-[6].

The Lyapunov function for a CNN layer proposed in [7]
for proving the complete stability under the symmetric con-
nection weights assumption is given in Equation (2):
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3. A HARDWARE ANNEALING SOLUTION

TO THE IMAGE RESTORATION

PROBLEM

Using continuous-time CNN for image restoration has some
advantages over discrete-time or continuous-time Hop�eld
networks. First, CNN have purely quadratic Lyapunov
function which occurs in image restoration. Second, their
self-feedback coe�cients need not be zero (or negative)
which is a requirement for discrete-time Hop�eld network.
CNN always converges to a local minimum solution as long
as the symmetry condition is satis�ed. Finally, because
of parallel and fast operation, continuous-time neural net-
works are best candidates for real-time optimization prob-
lems [10]-[11].

In most of the image restoration schemes, the degradation
model is given by the following 2-D FIR blurring system
with the additive noise.

di1;i2 =
X

(̂i1 ;̂i2)2Nr(0;0)

hî1 ;̂i2 � ŷi1�î1 ;i2�î2 + ni1;i2 :

Where, hi1 ;i2 is the 2-D impulse response of the FIR
blurring system commonly known as point spread function.
ŷi1;i2 , di1;i2 , and ni1;i2 represents the intensity gray levels of
the original image, the observation, and the white Gaussian
noise process, respectively.

In both regularization and Maximum a Posteriori estim-
ation frameworks, the image restoration for the above de-
gradation model can be posed as the minimization of the
following cost function.
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Where yi1;i2 's represent an estimate of the original im-
age. � represents the regularization parameter and gi1 ;i2 is
the impulse response of an FIR high pass �lter which is an
approximation to the Laplacian operator.

It should be observed that the cost function in (3) and
the Lyapunov function in (2) have similar quadratic forms
and they can be made equivalent by choosing suitable con-
nection weights.

In order to handle gray-level images with CNNs operating
in the bipolar binary steady-state output mode, eight cells
are needed for each image pixel if the binary representation
is used. 3-D CNN such that the third dimension is for
the gray-levels can be used for this purpose. In the binary
representation, each pixel gray-level yi1;i2 , in the range of
[�127:5 ; 127:5], can be given in terms of the bipolar binary
outputs yi1;i2 ;i3 2 f�1; 1g as

yi1;i2 =

7X
i3=0

yi1;i2 ;i3 � 2
i3�1

:

If the binary sum representation is used also for the pixel
gray-levels di1;i2 of the observed image, then 	Binary which
is obtained from 	 by adding a new term forcing yi1 ;i2;i3 's



to take binary values, and it can be made equivalent to the
Lyapunov function in (2) for the 3-D CNN.

	Binary = 	 �
1

2
�
X
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i3�1 �(yi1;i2 ;i3)

2
: (4)

The Lyapunov function in (2) for a 3-D continuous-time
CNN becomes equivalent to the cost function in (3) if

I) the following constant term which has no e�ect on the
minimization is ignored

1

2
�
X

(i1 ;i2)

(di1;i2 )
2
;

II) the external input is chosen equal to the observed im-
age, i.e., ui1 ;i2 = di1;i2 ,

III) the threshold I is set to zero,

IV) zi1 ;i2;i3 ;̂i1 ;̂i2 ;̂i3 = hi1�î1;i2�î2 � 2
i3+î3�2 ,

V) for all i1 6= î1, i2 6= î2 , i3 6= î3 ,

wi1;i2 ;i3 ;̂i1 ;̂i2 ;̂i3
=
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It should be observed that the self-feedback connection
weights in VI) can be made greater than A by choosing
su�ciently large �i1;i2 values, and then the bipolar binary

steady-state output mode for the 3-D CNN can be ensured.
Note also that adding squared terms as in (4) does not a�ect
the outcome of the optimization. In this work, we choose
the parameter �i1;i2 space-invariant, namely, �i1;i2 = �. In
[6], a �xed � was chosen yielding undesirable local minimum
solutions. Therefore an e�ective way to improve the quality
of the �nal solutions is needed.
Hardware annealing is an e�cient electronic version of

the mean �eld annealing, and has been successfully used
in the past to �nd the global optimum solutions of some
optimization problems [11]. On the other hand, graduated
nonconvexity method is employed to solve nonconvex op-
timization problems by �rst transforming the cost function
into a convex one, and then gradually rendering it non-
convex [10]. It is therefore desired to unite the properties
of both algorithms to overcome undesirable local minimum
problem. Now, considering the quadratic cost function in
(4) we can make several observations: i) For � < 0 the quad-
ratic in (4) is convex. ii) For � > 0 the quadratic in (4) is
inde�nite and may even become concave for increasing �.
iii) For � > 1 the binary mode of operation is ensured. We
therefore describe our algorithm as follows: First allow � to
be slightly negative so that the output is close to the uncon-
strained minima of the convex cost function. Later slowly
increase � to be slightly greater than unity for binary mode
of output.

4. EXPERIMENTAL RESULTS

In order to test the validity of the results developed in the
previous sections, two experiments are performed upon the
64x64 mid-portion of the original \Lena" image seen in Fig-
ure (a), and its degraded version seen in Figure (b). In the
experiments, the nonlinear di�erential equations are sim-
ulated using forward Euler method with su�ciently small
step size. The blurring system used in the experiments is
given by the following delta response.

hi1 ;i2 =

�
1
5

i1 = 0 ; i2 = 0
1
10

ji1j ; ji2j � 1 ; i1 ; i2 6= 0
:

The regularizing function gi1;i2 is chosen as the discrete
Laplacian operator. First experiment is performed with a
�xed � = 1:1. The outcome of the experiment can be seen
in Figure (c). In the second experiment � is time varying
(annealed) with �(t) = 1:1� 1:2e�t=� with a suitable time-
constant � . The outcome of that experiment can be seen
in Figure (d). As it can be observed, there is a consider-
able improvement compared to �rst experiment. With A

chosen to be unity, our simulations show that the �rst ex-
periment lasts about 40 seconds, and the second experiment
lasts about 150 seconds. Note that, considering typical cir-
cuit dynamics in VLSI implementations, one may have a
millionfold reduction of durations.

5. CONCLUSION

In this paper, regularized and MAP image restoration prob-
lems have been formulated as the minimization of the Lya-
punov functions of a 3-D CNN operating in a binary steady-
state output mode which is ensured by adding an extra term



to the image restoration cost function. A hardware anneal-
ing approach has been introduced for obtaining better local
minimum solutions for the considered image restoration
problem. The experiments demonstrate that continuous-
time CNN is a very good candidate for real-time image res-
toration since a possible VLSI implementation of it may
take few microseconds to restore an image of any size due
to parallel operation.

(a) (b)

(c) (d)

Figure (a) Original \Lena" image. (b) The blurred image
(S=N = 14dB). (c) The restored image with unannealed
CNN (S=N = 16dB). (d) The restored image with annealed
CNN (S=N = 21dB).
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