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Abstract

Approaches to wavelet-based denoising (or signal en-
hancement) have so far relied on the assumption of nor-
mally distributed perturbations. To relax this assump-
tion, which is often violated in practice, we derive a robust
wavelet thresholding technique based on the Minimaz De-
scription Length principle. We first determine the least
favorable distribution in the e-contaminated normal fam-
ily as the member that maximizes the entropy. We show
that this distribution and the best estimate based upon
it, namely the Maximum Likelihood Estimate, constitute
a saddle point. This results in a threshold that is more
resistant to heavy-tailed noise, but for which the estima-
tion error is still potentially unbounded. We address the
practical case where the underlying signal is known to be
bounded, and derive a two-sided thresholding technique
that is resistant to outliers and has bounded error. We
provide illustrative examples.

1 Introduction

The concept of “scale” has emerged in recent years as
an important characteristic for signal analysis, par-
ticularly with the advent of wavelet theory.

Wavelets provide a powerful tool for non-linear fil-
tering of signals contaminated by noise. Mallat and
Hwang [1] have shown that effective noise suppres-
sion may be achieved by transforming the noisy sig-
nal into the wavelet domain, and preserving only the
local maxima of the transform. Alternatively, a re-
construction that uses only the large-magnitude co-
efficients has been shown to approximate well the un-
corrupted signal. In other words, noise suppression
is achieved by thresholding the wavelet transform of
the contaminated signal.

To choose the appropriate threshold, Donoho and
Johnstone [2] have taken a minimax approach to
characterizing the signal (rather than the distur-
bance, which they assume to be Gaussian). They
derived a threshold that is approximately minimax
(in the sense that its sample size dependence is of
the same order as that of the true minimax): a co-

efficient C; is excluded from the reconstruction if
| C; |< oy/2log K, where o is the standard devia-
tion of the noise, and K is the length of the obser-
vation. Krim and Pesquet [3] have used Rissanen’s
Minimum Description Length (MDL) criterion [4] to-
gether with the assumption of normally distributed
noise, and derived an identical threshold. Another
feature that makes this threshold compelling is that
it is asymptotically equivalent to the mazimum of a
sample of independent normally distributed variates
[5], suggesting the intuitively pleasing interpretation
that anything larger in magnitude is extremely un-
likely to be pure noise and must therefore contain
signal.

Nevertheless, the procedure remains non-robust. Al-
though wavelets, thanks to their compactness and lo-
calization properties, do provide an unconditional ba-
sis for a large smoothness class of signals and offer a
simple framework for nonlinear filtering, the proce-
dures derived to date have been based upon the as-
sumption of normality of the noise, and are therefore
sensitive to outliers, i.e. to noise distributions whose
tails are heavier than the Gaussian distribution. In
this paper we adopt the minimax approach due to
Huber [6] to derive a thresholding technique that is
resistant to spurious observations.

2 Problem Statement

The estimation problem of interest in this paper as-
sumes the following observation model:

z(t) = s(t) +n(t), t=1,... K, (1)
with () € L*(R), and where s(t) is a deterministic
but unknown signal corrupted by the noise process
n(t).

In nonparametric estimation, the underlying signal
model is often assumed to be induced by an orthonor-
mal basis representation,

s(t) =Y Cli(t),

i

(2)



which in turn leads to the working model

where the independent noise component has the same
statistical properties as n(t). Our problem is to re-
cover /reconstruct s(t) from the orthogonal transform
of the observed process of x(t). This can be achieved
by using the MDL principle to determine which co-
efficients C; contain signal information, and which
are primarily noise and can therefore be left out of
the reconstruction. However, since MDL is the max-
imum log likelihood minus a penalty term propor-
tional to the number of parameters (i.e. the number
of signal-containing coefficients C;) in the model, it is
strongly dependent on the distributional assumptions
that characterize the noise. This paper addresses the
derivation of a filtering technique that is resistant to
heavy-tailed noise.

3 The Minimax Description
Length (MMDL) Criterion

Following Huber [6], we assume that the noise dis-
tribution f is a (possibly) scaled version of a dis-
tribution belonging to the family of e-contaminated
normal distributions P, = {(1—¢)® +eG : G € F},
where @ is the standard normal distribution, F is the
set of all distribution functions, and € € (0,1) is the
known fraction of contamination. We cast our signal
estimation problem as one of location parameter es-
timation, and thus assume the estimators to be in S,
the set of all integrable mappings from R to R.

As in [7], we use the coding length of the observation
in Equation 3 to determine the optimality of the sig-
nal estimate. For fixed model order, the expectation
of the MDL criterion is the entropy (plus the penalty
term which is independent of both the distribution
and the functional form of the estimator). In accor-
dance with the minimax principle, we seek the least
favorable noise distribution and evaluate the MDL
criterion for that distribution. In other words, we
solve a minimax problem where the entropy is simul-
taneously maximized over all distributions in P, and
minimized over all estimators in S.

The least favorable distribution in P., i.e. the dis-
tribution that maximizes the entropy, is precisely the
same as that found by Huber to maximize the asymp-
totic variance (or equivalently minimize the Fisher
information). Generalizing Huber’s distribution to
perturbations from the zero-mean normal distribu-

tion with variance o2, we get:

Proposition 1. The distribution fg € P. that max-
imizes the entropy is

(1 — &)y (a)e7™ (2T
(1 - 6)¢0.(C)
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(1= &)py(a)esz ") g < ¢

where ¢, is the normal density with variance o> and
a 1s related to € by the equation
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Proof: The proof that fy maximizes the entropy is
similar to that of Huber for the Fisher information.
It can be shown that the negentropy H(f) = E[log f]
is a convex function of f, that P, is a convex set, and
that if we define fy = (1 — X)fg + Af for any f € P
and any A € (0, 1), then

()

9 H(f) o > 0

X (6)

establishing the desired result. ]

Thus, the least favorable distribution in P. is normal
in the center and Laplacian (“double exponential”) in
the tails. The point where the density switches from
Gaussian to Laplacian is a function of the fraction
of contamination, larger fractions corresponding to
smaller switching points and vice versa.

For a given distribution, the entropy is minimized
by the Maximum Likelihood Estimate (MLE): since
the negentropy is the expectation of the log likeli-

hood, it follows that E[log f(C;601p(C))] is maxi-
mum among all functions # € S. Thus, we obtain:

Proposition 2. Huber’s distribution fg, together

with the MLE based on it, éH, result i o Minimax
Description Length, i.e. they satisfy a saddle-point
condition.

Proof: Using a theorem due to Verdd and Poor [8],
this can be shown to be equivalent to proving that

~

where 6 is the true value of the parameter and 0A>\ is
the MLE based upon fy. Setting 0y = 0y + A(X), it
can be shown that

ML?"((C))) = 1+ AM)Ae (g’(C;éH(C))

Ia(e;Ou(c

where, since f and fg are in P., they can be repre-
sented as f = (1—¢)p+eg and fy = (1 —¢€)p+egm,
respectively. Furthermore, since

Fi(e0:() + 2e (g'(c;0a(e))
~ g(c:02(0))) (9)

AGoa(0) =



Figure 1: Plot of the negative exponent vs. C, show-
ing quadratic and linear regions.
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Case 1 When log K > 25, the coeflicient estimate is

N 202
set to zero if

1 a?
= a|C;| -5 < logK (11)
which implies that
Cil< &5 Clogk (12)
! 2 a o8

Case 2 When log K < a® the coefficient estimate is

N 202
set to zero if

1 .
which implies that
|Ci| < ov/2logK (14)

This is the threshold based on the assumption of nor-
mality, as proposed by [2] and [3].
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proximately 0dB SNR) in the top graph consists of
two ramps with a discontinuity between them, onto
which is superimposed noise from a Gaussian mix-
ture with the following components: A(0,0?) with
probability 1 —e = 0.9, and N(0,90?) with proba-
bility e = 0.1. The second graph shows a reconstruc-
tion using coefficients over 4 resolutions achieved by
the normal threshold; the third graph shows a sim-
ilar reconstruction achieved by the proposed robust
threshold. The robust threshold suppresses several
instances of impulsive noise that the normal thresh-
old misses.
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Figure 2: Noisy ramp signal, and its classical and
robust reconstructions.

5 Constrained Minimax
Thresholding

The procedure outlined above is somewhat more con-
servative than the traditional threshold in deciding
whether or not a coefficient represents “primarily
noise” and thus should be excluded from the recon-
struction. It is therefore less vulnerable to noise that
is heavier-tailed than normal. However, since it is
based upon thresholding from below only, it does not
result in an estimator whose error is bounded. Be-
cause the coefficients {C;} are assumed independent,

C; = C; for each C; that exceeds the threshold, and
there is nothing to counterbalance the influence of a
single spurious data point. Thus the estimation error
can increase without bound.
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Figure 3: Absolute reconstruction error vs. outlier
amplitude for three thresholds.

We proposed a Minimax Description Length
(MMDL) principle as the criterion of choice for
thresholding wavelet coefficients. We determined the
least favorable distribution in the e-contaminated
normal family, which we used to derive a robust
threshold that is resistant to outliers. We further
assumed that the true signal has bounded ampli-
tude and derived a thresholding technique from above
and below that results in bounded estimation error.
These robust thresholds yield denoising methods that
are less sensitive to heavy-tailed noise than the tradi-
tional threshold based on the assumption of normal-

ity.
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