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Abstract

Approaches to wavelet-based denoising (or signal en-

hancement) have so far relied on the assumption of nor-

mally distributed perturbations. To relax this assump-

tion, which is often violated in practice, we derive a robust

wavelet thresholding technique based on theMinimax De-

scription Length principle. We �rst determine the least

favorable distribution in the "-contaminated normal fam-

ily as the member that maximizes the entropy. We show

that this distribution and the best estimate based upon

it, namely the Maximum Likelihood Estimate, constitute

a saddle point. This results in a threshold that is more

resistant to heavy-tailed noise, but for which the estima-

tion error is still potentially unbounded. We address the

practical case where the underlying signal is known to be

bounded, and derive a two-sided thresholding technique

that is resistant to outliers and has bounded error. We

provide illustrative examples.

1 Introduction

The concept of \scale" has emerged in recent years as
an important characteristic for signal analysis, par-
ticularly with the advent of wavelet theory.

Wavelets provide a powerful tool for non-linear �l-
tering of signals contaminated by noise. Mallat and
Hwang [1] have shown that e�ective noise suppres-
sion may be achieved by transforming the noisy sig-
nal into the wavelet domain, and preserving only the
local maxima of the transform. Alternatively, a re-
construction that uses only the large-magnitude co-
e�cients has been shown to approximate well the un-
corrupted signal. In other words, noise suppression
is achieved by thresholding the wavelet transform of
the contaminated signal.

To choose the appropriate threshold, Donoho and
Johnstone [2] have taken a minimax approach to
characterizing the signal (rather than the distur-
bance, which they assume to be Gaussian). They
derived a threshold that is approximately minimax
(in the sense that its sample size dependence is of
the same order as that of the true minimax): a co-

e�cient Ci is excluded from the reconstruction if
j Ci j� �

p
2 logK, where � is the standard devia-

tion of the noise, and K is the length of the obser-
vation. Krim and Pesquet [3] have used Rissanen's
Minimum Description Length (MDL) criterion [4] to-
gether with the assumption of normally distributed
noise, and derived an identical threshold. Another
feature that makes this threshold compelling is that
it is asymptotically equivalent to the maximum of a
sample of independent normally distributed variates
[5], suggesting the intuitively pleasing interpretation
that anything larger in magnitude is extremely un-
likely to be pure noise and must therefore contain
signal.

Nevertheless, the procedure remains non-robust. Al-
though wavelets, thanks to their compactness and lo-
calization properties, do provide an unconditional ba-
sis for a large smoothness class of signals and o�er a
simple framework for nonlinear �ltering, the proce-
dures derived to date have been based upon the as-
sumption of normality of the noise, and are therefore
sensitive to outliers, i.e. to noise distributions whose
tails are heavier than the Gaussian distribution. In
this paper we adopt the minimax approach due to
Huber [6] to derive a thresholding technique that is
resistant to spurious observations.

2 Problem Statement

The estimation problem of interest in this paper as-
sumes the following observation model:

x(t) = s(t) + n(t); t = 1; : : : ;K; (1)

with x(t) 2 L2(R), and where s(t) is a deterministic
but unknown signal corrupted by the noise process
n(t).

In nonparametric estimation, the underlying signal
model is often assumed to be induced by an orthonor-
mal basis representation,

s(t) =
X
i

Cs

i  i(t); (2)
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which in turn leads to the working model

Ci = Cs

i
+ Cn

i
; i = 1; � � � ;K; (3)

where the independent noise component has the same
statistical properties as n(t). Our problem is to re-
cover/reconstruct s(t) from the orthogonal transform
of the observed process of x(t). This can be achieved
by using the MDL principle to determine which co-
e�cients Ci contain signal information, and which
are primarily noise and can therefore be left out of
the reconstruction. However, since MDL is the max-
imum log likelihood minus a penalty term propor-
tional to the number of parameters (i.e. the number
of signal-containing coe�cients Ci) in the model, it is
strongly dependent on the distributional assumptions
that characterize the noise. This paper addresses the
derivation of a �ltering technique that is resistant to
heavy-tailed noise.

3 The Minimax Description
Length (MMDL) Criterion

Following Huber [6], we assume that the noise dis-
tribution f is a (possibly) scaled version of a dis-
tribution belonging to the family of "-contaminated
normal distributions P" = f(1� ")�+ "G : G 2 Fg,
where � is the standard normal distribution, F is the
set of all distribution functions, and " 2 (0; 1) is the
known fraction of contamination. We cast our signal
estimation problem as one of location parameter es-
timation, and thus assume the estimators to be in S,
the set of all integrable mappings from R to R.

As in [7], we use the coding length of the observation
in Equation 3 to determine the optimality of the sig-
nal estimate. For �xed model order, the expectation
of the MDL criterion is the entropy (plus the penalty
term which is independent of both the distribution
and the functional form of the estimator). In accor-
dance with the minimax principle, we seek the least
favorable noise distribution and evaluate the MDL
criterion for that distribution. In other words, we
solve a minimax problem where the entropy is simul-
taneously maximized over all distributions in P" and
minimized over all estimators in S.
The least favorable distribution in P", i.e. the dis-
tribution that maximizes the entropy, is precisely the
same as that found by Huber to maximize the asymp-
totic variance (or equivalently minimize the Fisher
information). Generalizing Huber's distribution to
perturbations from the zero-mean normal distribu-
tion with variance �2, we get:

Proposition 1. The distribution fH 2 P" that max-
imizes the entropy is

fH(c) =

8<
:

(1� ")��(a)e
1

�
2
(ac+a2) c � �a

(1� ")��(c) �a � c � a

(1� ")��(a)e
1

�
2
(�ac+a2) a � c (4)

where �� is the normal density with variance �2 and
a is related to " by the equation

2

�
��(a)

a=�2
���(�a)

�
=

"

1� "
(5)

Proof: The proof that fH maximizes the entropy is
similar to that of Huber for the Fisher information.
It can be shown that the negentropy H(f) = E[log f ]
is a convex function of f , that P" is a convex set, and
that if we de�ne f� = (1� �)fH + �f for any f 2 P"
and any � 2 (0; 1), then

@

@�
H(f�) j�=0 � 0 (6)

establishing the desired result.

Thus, the least favorable distribution in P" is normal
in the center and Laplacian (\double exponential") in
the tails. The point where the density switches from
Gaussian to Laplacian is a function of the fraction
of contamination, larger fractions corresponding to
smaller switching points and vice versa.

For a given distribution, the entropy is minimized
by the Maximum Likelihood Estimate (MLE): since
the negentropy is the expectation of the log likeli-

hood, it follows that E[log f(C; �̂MLE(C))] is maxi-
mum among all functions � 2 S. Thus, we obtain:
Proposition 2. Huber's distribution fH , together

with the MLE based on it, �̂H , result in a Minimax
Description Length, i.e. they satisfy a saddle-point
condition.

Proof: Using a theorem due to Verd�u and Poor [8],
this can be shown to be equivalent to proving that

Z
f�(c; �) log

f�(c; �̂�(c))

f�(c; �̂H(c))
dc = o(�) (7)

where � is the true value of the parameter and �̂� is

the MLE based upon f�. Setting �̂� = �̂H +�(�), it
can be shown that

f�(c; �̂�(c))

f�(c; �̂H(c))
= 1 + �(�)�"

�
g0(c; �̂H(c))

� g0
H
(c; �̂H(c))

�
+ o(�) (8)

where, since f and fH are in P", they can be repre-
sented as f = (1� ")�+ "g and fH = (1� ")�+ "gH ,
respectively. Furthermore, since

f 0
�
(c; �̂�(c)) = f 0

H
(c; �̂�(c)) + �"

�
g0(c; �̂�(c))

� g0
H
(c; �̂�(c))

�
(9)
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it follows that �(�) = O(�) with probability 1, and
thus,

log
f�(c; �̂�(c))

f�(c; �̂H(c))
= o(�) (10)

proving the result.

4 Minimax Thresholding

As illustrated by Figure 1, there are two distinct
cases: the region where the exponent is linear, and
the region when the exponent is quadratic.
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bounded estimation error. Speci�cally, we use a con-
strained MLE when evaluating the MMDL criterion.

We assume that the signal (uncorrupted by noise) is
of bounded magnitude, i.e. that there exists an � > 0
such that j Cs

i
j� � for all i. Then, it can be shown

that since fH is unimodal, the constrained MLE given
by

Ĉ�

i =

8<
:

�� Ĉi � ��
Ĉi �� � Ĉi � �

� � � Ĉi

(15)

(where Ĉi is the unconstrained MLE) maximizes the
negentropy for fH subject to the signal constraint.

Thus, we propose the following scheme, when logK >
a2=2�2 and � > (a=2) + (�2=a) logK:

~Ci =

8<
:

0 if j Ĉi j� a

2
+ �

2

a
logK

Ĉi if a

2
+ �

2

a
logK �j Ĉi j� �

� sgn(Ĉi) if � �j Ĉi j (16)

A numerical example appears in Figure 3. In the
same setup as the previous example, an outlier is arti-
�cially induced at a known location and the absolute
reconstruction error at that point is plotted against
the outlier amplitude for the classical, robust, and
bounded-robust thresholds. Initially the three errors
are nearly identical. As the amplitude increases, the
classical threshold is crossed �rst, followed by the ro-
bust and bounded-robust thresholds. Although the
robust error eventually catches up with the classical
error and the two continue to increase, the bounded-
robust error attens out. The discontinuities corre-
spond to individual wavelet coe�cients crossing the
thresholds.
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