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ABSTRACT

In this work, extended forms of contrast functions are

introduced to provide statistical measures of indepen-

dence for orthogonal mixtures. We also de�ne semicon-

trasts based on second-order statistics which, in some

cases, may be su�cient to separate the mixed sources.

The corresponding criteria are then used to obtain an

optimized representation of a stochastic process in an

orthonormal basis of wavelet packets or local cosines.

1. INTRODUCTION

We consider a linear orthogonal mixture of N real sig-

nals called sources. The vector of sources a =

(a1; : : : ; aN )
T consists ofN random variables. Further-

more, we assume that the sources do not necessarily

have the same variance. The N outputs of the mixture

are called the observations and the vector of observa-

tions is denoted by x. In matrix and vector notations,

the input/output relations of the mixing system are

x = Ga (1)

where G is the orthogonal matrix characterizing the

mixture. The sources are assumed to satisfy the fol-

lowing assumption:

A. The sources ai, i 2 f1; : : : ; Ng, are statistically

mutually independent.

Although not always explicitly mentioned, we will as-

sume that the cumulants of some random variables ex-

ist whenever they are introduced. The general inde-

pendence (resp. decorrelation) problem consists in de-

termining a linear system operating on the observation

vector x, such that its N outputs yi, i 2 f1; : : : ; Ng,

are statistically independent (resp. decorrelated). This

transformation reads

y = Hx (2)

where y = (y1; : : : ; yN )
T is the output vector and H is

an orthogonal matrix to be determined.

Making the components of y independent is closely re-

lated to the source separation problem because the for-

mer task is equivalent to restore the N independent

sources. The independence is realized i� the global

transform matrix

S
4
= HG (3)

satis�es the so-called independence property : S = DP

where D = diag(�1; : : : ;�1) and P is a permutation

matrix. Since one wishes to obtain a statistically inde-

pendent vector y, a measure of independence is needed.

In the source separation context, such measures have

been introduced by Comon [4] and are called contrast

functions or contrasts. In this work, we focus on mix-

tures belonging to the set U of orthogonal matrices.

The subset of U satisfying the independence property

is denoted by P. The set of the considered independent

random source vectors is designated by Ai and the set

of random vectors y = Sa where a 2 Ai and S 2 U

is denoted by Yi. We now recall the de�nition of a

contrast [4]:

De�nition 1 A contrast on Yi is a multivariate map-

ping I from the set Yi toRwhich satis�es the following

three requirements:

R1. 8a 2 Yi, 8S 2 P, I(Sa) = I(a);

R2. 8a 2 Ai, 8S 2 U , I(Sa) � I(a);

R3. 8a 2 Ai, 8S 2 U , I(Sa) = I(a) , S 2 P.

2. STATISTICAL MEASURES

2.1. Measuring independence

A �rst contrast was proposed in [4], which is expressed

as the sum of the squares of the auto-cumulants of the

outputs of the separating system. In [5], it was shown



that squaring the cumulants is not necessary to de�ne

a contrast.

It is interesting to note that there exists a common

point between the two aforementioned contrasts. They

are indeed sums of some convex functions, (�)2 or (�),

of the absolute values of the q-th order cumulants. In

this work, a generalization of the above measures of in-

dependence is proposed which is based on a convexity

property.

De�ne

I
f
q1;::: ;qQ

(y)
4
=

NX
i=1

J
f
q1;::: ;qQ

(yi) (4)

where Q 2 N
�, (q1; : : : ; qQ) 2 (N� n f1g)Q,

J
f
q1;::: ;qQ

(yi)
4
= f

�
jCumq1yij; : : : ; jCumqQyij

�

and 8k 2 f1; : : : ; Qg, Cumqkyi is the cumulant of order

qk of yi. Here, f is a function de�ned on (R+)
Q, satis-

fying three properties:

(i) f is convex;

(ii) f is increasing w.r.t. any of its variables;

(iii) f has a unique minimum (which is at the origin).

In [8], the following result is proved:

Proposition 1 Under asumptions (i), (ii), (iii) and if

(iv) there exists at most one i 2 f1; : : : ; Ng such that

8ki 2 f1; : : : ; Qg, Cumqki
ai = 0;

(v) 8i 2 f1; : : : ; Qg, qi � 3;

the function Ifq1;::: ;qQ is a contrast on Yi.

New forms of contrasts can be derived from the above

proposition [8]. In particular, as also mentioned in [10],

cumulants of di�erent orders can be combined to im-

prove the robustness of a contrast w.r.t. the variability

of the statistics of the sources. Connections between

some of these criteria and contrasts based on cross-

cumulants have also been exhibited in [8].

2.2. Measuring decorrelation

Proposition 1 prescribes the use of high-order statis-

tics to build contrast functions. Second-order moments

can however be su�cient in some speci�c situations.

The corresponding criteria are measures of decorrela-

tion which will be called semicontrasts subsequently.

First of all, we have to replace the assumption A by

the weaker assumption:

A'. The sources ai, i 2 f1; : : : ; Ng, are statistically

mutually uncorrelated.

Now the set of random vectors satisfying A' will be

denoted by Ad and the set of vectors y = Sa where

a 2 Ad and S 2 U will be denoted by Yd. In fact,

Yd is the whole set of second-order random vectors as

the linear decomposition of such a vector in uncorre-

lated components is always possible by performing its

Karhunen-Lo�eve transform.

Let us de�ne a semicontrast:

De�nition 2 A semicontrast on Yd is a multivariate

mapping D from the set Yd to R which satis�es the

following three requirements:

R1'. 8a 2 Yd, 8S 2 P, D(Sa) = D(a);

R2'. 8a 2 Ad, 8S 2 U , D(Sa) � D(a);

R3'. 8a 2 Ad, 8S 2 U , D(Sa) = D(a) , Sa 2 Ad.

We have the following result [8]:

Proposition 2 If ' is a strictly convex function from

(R+)
N to Rwhich is invariant under any permutation

of its variables, then a semicontrast on Yd is given by

D
'(y)

4
= '(Var y) (5)

where Vary
4
= (�2y1 ; : : : ; �

2
yN
)T denotes the vector of

component variances of y.

An example of such a measure of decorrelation is

'(Var y) =

NX
i=1

f(�2yi ) (6)

where f is a strictly convex function from R+ to R.

This latter result was already obtained in [9] when

f(z) = z log z.

In general, decorrelation is a necessary but not suf-

�cient condition for independence. However, a semi-

contrast is a contrast on Yd when all the sources have

di�erent variances. Another interesting property can

also be stated:

Proposition 3 If I is a contrast on Yi � Yd and D is

a semicontrast on Yd, then I +D is a contrast on Yi.

Proposition 3 allows us to de�ne contrast functions in-

volving second and higher-order statistics and, thus, it

provides a more general characterization of contrasts

than Proposition 1.



3. APPLICATIONS TO \BEST BASIS"

SEARCH

3.1. Connections between source separation and

best basis search

In this part, we consider an application of measures of

decorrelation/independence to the search of the \best"

matched orthonormal representation of a discrete-time

random signal (yn)n2Z, which is observed on a �nite in-

terval f1; : : : ; Ng, N 2 N
�
n f1g. This problem can be

viewed as a large dimension source separation problem

as the size N of the vector y = (y1; : : : ; yN )
T of obser-

vations is generally large. In this context, it would not

be feasible to search the optimal matrix H within the

whole set of orthogonal matrices. To overcome this dif-

�culty, we restrict our search to a speci�c subset of U .

We can proceed in the following way to do this. First,

8j 2 f0; : : : ; J � 1g with J 2 N
� and J � log2N ,

we de�ne a set fHN
j+1;m;m 2 f0; : : : ; 2j+1 � 1gg of

N=2j+1 �N matrices satisfying 8m 2 f0; : : : ; 2j � 1g,

there exists an N=2j �N=2j orthogonal matrix TN
j;m

such that

�
HN

j+1;2m

HN
j+1;2m+1

�
= TN

j;mH
N
j;m

and HN
0;0 is an orthogonal matrix. De�ne

PJ
4
= fIj1;m1

; : : : ; IjP ;mP
g

where P 2 f1; : : : ; 2Jg and Ijp;mp
= [2�jpmp; 2

�jp(mp+

1)) with 8p 2 f1; : : : ; Pg, jp 2 f0; : : : ; Jg,

mp 2 f0; : : : ; 2
jp � 1g and

�
8p 2 f1; : : : ; P � 1g ; 2�jp(mp + 1) = 2�jp+1mp+1

m1 = 0 ; 2�jP (mP + 1) = 1 :

Such a set PJ will be called a dyadic partition of [0; 1).

Then, it can be checked that an N � N orthogonal

matrix is obtained as

HN
PJ

4
= HN

j1;m1
� � � � �HN

jP ;mP
(7)

where � denotes the concatenation matrix operator de-

�ned, for all matricesA andB having the same number

of columns, by A �B
4
=
�
ATBT

�T
.

Subsequently, we focus on the speci�c subset of orthog-

onal matrices HN
PJ

which is generated by considering

all the possible dyadic partitions PJ of [0; 1) for a given

choice of matricesHN
0;0 and T

N
j;m for j 2 f0; : : : ; J�1g

and m 2 f0; : : : ; 2j � 1g.

If a dictionary of orthogonal transforms such as discrete-

time forms of the decompositions onto wavelet packets

or local cosines [2] is used, a fast tree search algorithm

[2] may be applied to optimize a criterion of the form

(6) or (4). The use of contrasts or semicontrasts thus

provides a natural alternative to the statistical methods

developed in [6, 1, 3] to optimize such time-frequency

representations of a random signal.

3.2. Use of decorrelation measures

When the criterion in (6) is optimized, the resulting

decomposition is suboptimal in terms of decorrelation

but is less complex than the Karhunen-Lo�eve trans-

form. Furthermore, the method corresponds to a de-

composition onto an orthonormal basis of sequences

well-localized in time and frequency. This property is

often desirable from a practical point of view but is not

necessarily satis�ed for the vectors of the Karhunen-

Lo�eve basis.

In the case of wavelet packet decompositions, asymp-

totic results can also be derived in order to gain insight

into this kind of decompositions. Toward this end, we

will focus on semicontrasts of the form:

8N 2 N
�
n f1g ; DN (y

N )
4
=

1

N

NX
i=1

f(�2yi ) (8)

where yN = (y1; : : : ; yN )
T and f is a strictly convex

function from R+ to R, which does not depend on the

original data length N . In particular, under some weak

assumptions on boundary treatments, we have proved

[8] the following result:

Proposition 4 Let J 2 N
� and (yn)n2Zbe a sec-

ond order stationary process to be analyzed. When

N ! 1, an orthonormal basis allowing to maximize

any semicontrast of the form (8) within a given dictio-

nary of possibly nonstationary wavelet packets is the

equal subband analysis associated with the orthogonal

matrix HN
J;0 � � � � �H

N
J;2J�1

.

Recall that a nonstationary wavelet packet decomposi-

tions is implemented using di�erent paraunitary �lter

banks at each resolution level.

The above proposition means that, when optimizing a

semicontrast, arbitrary choices of wavelet packet bases

may be interesting only for nonstationary signals.

3.3. Use of independence measures

In general, some of the variances of the components of

the signal may be equal and contrast functions based on

higher-order statistics must then be used to optimize



the representation. Such a situation occurs in time-

frequency multiplexing techniques [7] where the mul-

tiplexer is a paraunitary quadrature mirror synthesis

�lter bank whose structure is allowed to be adaptively

varied in time. We have shown that, if the sources to

be transmitted are iid, contrasts can be used by the

receiver to blindly recover the structure of the multi-

plexer without any need for transmitting overhead in-

formation.

As an illustrative example, four PAM-4 signals have

been multiplexed using the synthesis �lter bank corre-

sponding to a wavelet decomposition over 3 resolution

levels. The values of a fourth-order cumulant based

contrast have been evaluated at each possible node of

the analysis �lter banks used at the receiver. As de-

picted by the gray scale representation in Fig. 1, the

wavelet basis is properly recovered. On the opposite,

Fig. 2 shows that a standard averaged entropy criterion

would lead us to conclude that the time-representation

is the best one.

Figure 1: Contrast values computed from 40 realiza-

tions of a noisy multiplexed signal of length 256 (j = 0

at the top of the map).

Figure 2: Averaged entropy values.
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