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Abstract . :
Current wavelet-based statistical signal and image pro- ° ° °

cessing techniques such as shrinkage and filtering treat the

wavelet coefficients as though they were statistically inde-

pendent. This assumption is unrealistic; considering the

statistical dependencies between wavelet coefficients can

yield substantial performance improvements. In this paper,

we develop a new framework for wavelet-based signal pro-

cessing that employs hidden Markov models to characterize f
the dependencies between wavelet coefficients. To illustrate Figure 1. Tiling of the time-frequency plane by the atoms
the power of the new framework, we derive a new algorithm  of the wavelet transform. Each box depicts the idealized
for signal estimation in nonGaussian noise. support of a wavelet atomy; in time-frequency; the black
dot at the center corresponds to the wavelet coeffieignt
Each different row of wavelet atoms corresponds to a dif-
ferentscaleor frequency band(We run the frequency axis
down rather than up for later convenience.)

1 Introduction

Wavelets have emerged as an exciting new tool for sta-
tistical signal and image processing. The wavelet transform ) )
is an atomic decomposition that represents a sigftalin Compression: The wavelet transforms of real-world sig-
terms of its projections; onto shifted and dilated versions nals and images tend to be sparse.
¥;(t) of a prototype bandpass wavelet functipft). The
w; are referred to as theavelet coefficientand measure
the content of the signal at various locations in time and fre-

quency (see Figure 1). _ interpretation of the transform as a “decorrelator” that at-
The jointtime-frequency analysis effected by the wavelet yo i 1o make each wavelet coefficient statistically inde-

transform has some attractive properties that make it natura{)endent of all others. If this were possible for all signals
for statistical applications, including estimation 1, 2, 3], de- ;4 images, then simple scalar processing in the wavelet
tection, and classification. We call these gremary prop- domain would be optimal.

ertiesof the wavelet transform: However, the wavelet transform cannot completely
decorrelate real-world signals and images +esidual de-
pendency structuralways remains between the wavelet co-
efficients. In words, we have followingecondary proper-

' tiesof the wavelet transform:

Attention has focused orscalar processing of the
wavelet coefficients [1]. Scalar wavelet processing algo-
rithms are based on the primary properties above plus an

Locality: Each wavelet atom); is localized simultane-
ously in time and frequency. Therefore, wavelets can
match a wide range of different signal components
from transients to harmonics.

Clustering: If a particular wavelet coefficient is

large/small, then neighboring coefficients are very

likely to also be large/small.

Multiresolution: Wavelet atoms compress and dilate to an-
alyze at a nested set of scales. This allows the trans-
form to match both short-duration and long-duration

signal structures. Persistence across Scald-arge/small values of wavelet
coefficients tend to propagate across scales.

*This work was supported by the National Science Foundation, grant

gg._ll/llggzgsmsg, and the Office of Naval Research, grant no. NOOOl4-g 1y o thege empirical observations have been exploited

Email: mcrouse@rice.edu, richb@rice.edu, rowak@egr.msu.edu with tremend_ous steess by the compression Cqmmunity
Web: http//www-dsp.rice.edu, httg/www.egr.msu.edu/spc/ [4]. Our goalis to do the same for signal processing.



S structure on the hidden states using a probabilistic graph

P P,(2) =1-P_(1) [6, 7]. The Locality and Multiresolution properties of the
|;> wavelet transform suggest three simple graphs for charac-
j\ o~ H te_rlzmg the_ local dependenues betyveen the wavelet coeffi-
cients of Figure 1. In Figure 3 we illustrate these graphs,
fiys WIS=1) fiys WIS=2) f, W) which are formed by “connecting the dots” representing
W the wavelet state variables. We call these graphsgelet-

Figure 2. A two-state Gaussian mixture model for aran- ~ Markov models

dom variableW . We denote the state variabfewith a 1

white dot, the random variabl& with a black dot. Illus- i

trated are the Gaussian conditional pdf'sifétsS as well as

the overall mixture pdf fobV . In our application, we model 2/?/ --------------- 3?\
each wavelet coefficieRt; (each black dot in Figure 1) in SO\ SN

thisway. AL o . CO )
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In this paper, we introduce the concept of probabilis- L
tic graphs (specifically Hidden Markov models) for char- iO — disvetesate S, - Markov chain
acterizing the dependencies between the coefficients of the i
wavelet transform. Our marriage of wavelet transforms and
Hidden Markov models yields a flexible framework for sta- ~ Figure 3. Wavelet-Markov models for capturing the sta-
tistical signal and image processing that both matches the tistical dependencies of the coefficients of a wavelet trans-
properties of the wavelet transform and exploits the struc- ~ form. Each black dot represents a continuous wavelet coef-
ture inherent in real-world signals and images. This frame- ~ ficientW.. Each white dot represents the (hidden) mixture
work provides a natural setting for signal estimation, de- state variables; for . Removing all dashed connections
tection, classification, and even synthesis. In particular, we corresponds to the Independent Mixture Model. Connect-

il thi th to devel lqorithm for si ing white dots horizontally across time yields the Hidden
wi use_ IS. ne\_/v eory to _eve Op_ a hew algorithm or sig- Markov Chain Model. Connecting white dots diagonally
nal estimation in nonGaussian noise.

across scales yields the Hidden Markov Tree Model.

— wavelet coefficient Wi <\ Markov Tree

2 Wavelet-Markov Models
Independent Mixture Model (IMM): Removing all con-

Recall the Compression property of the wavelet trans-pections between state variablgsin Figure 3 leads to the
form. The transform of a typical signal or image consists model presented in [2, 3]. It treats the wavelet state vari-

of a small number of large coefficients and a large numberapjes (and hence the wavelet coefficients) as independent.
of small coefficients. Thus, we can roughly modath co- ] _ )
efficient as being in one of two states: “high” or “low.” If Hidden Markov Chain Model:  Connecting the state

we associate with each state a pdf — say a high-variancevariablessS; horizontally in Figure 3 specifies a Markov

zero-mean density for the “high” state and a low-variance,chain [5] dependency between the state variabfehin
zero-mean density for the “low” state — the result is a two- €ach scale This new model treats wavelet state variables

state mixture model for each wavelet coefficient. as dependent within each scale, but independent from scale

In this paper, we will model each wavelet coefficient as a to scale.
ra_ndom variaplé% With a two-stgte (zero-mean) Gaussian Hidden Markov Tree Model:
mlxtu_re density. Emplrlcally, this model has proven both ablesacross scales Figure 3, we obtain a graph with tree-
effect_lve and convgnlent [2, 3]. As we see from Figure 2, structured dependencies between state variables.
this simple model is completely parameterized by the pmf
of the state variabl§;, ps,(1), 1 —ps, (1), and the variances The Hidden Markov Tree Model matches both the
of the Gaussian pdf’s correspondinggach stater? |, o7 ,. Clustering and Persistence across Scale properties of the
We say that the state variables hrdden because theirval-  wavelet transform. Its structure is reminiscent of the ze-
ues are not observed directly, but rather are gleaned fromotree wavelet compression system [4], which exploits tree-
the observed wavelet coefficients. structured dependencies for substantial compression gains.
Based on the wavelet Clustering and Persistence Across The Hidden Markov Tree Model has a natural parent-
Scales properties, we expect probabilistic coupling betweerchild dependency interpretation, which is defined formally
the state variables. Simply put, these two properties suggedty a directed tree graph [6, 7]. State variable dependencies
that the state of a given wavelet coefficient is likely to be are modeled via state transition probabilities freach par-
high (low) if its neighbors across time and scale are highent state variablg; to its “children,” the two state variables
(low). To capture this behavior, we introduce a Markovian connected to it from below (if they exist). For example, in

By connecting state vari-



Figure 3, state variables; and.Ss are both children of,, local maximum of the likelihood function [5, 9, 10]. More-
and hence causally dependent $n Dependency is not over, for these graphs, the Expectation step is equivalent to
simply limited to parent-child interactions, however. State likelihood determination. For details on the specific expec-
variablesS, and.S; may be highly dependent due to their tation and maximization steps for the three different graphs
joint dependency witls. see [8].

Let S,;y denote the parent of;. Using a zero-mean
Gaussian mixture model for each wavelet coefficient value4  Application to Signal Estimation

W;, the parameters for the Hidden Markov Tree Model are:
We now apply wavelet-Markov modeling to signal esti-

1. ps, (m), the pmf for the roob; . mation in additive whitmonGaussiamoise, extending the
. work done in [11] for estimation in white Gaussian noise.
2. oy = Psils, (MISpi) = 1), the probability that - estimatioll pr]oblem is expressed in the wavelet domain
S 18 In statem given.Sy;) is in stater. asw; = 0; + n;, wherew;, 0;, andn; denote the wavelet
coefficients of the observed data, the signal, and the noise,
respectively. We assume the noise in the signal domain is
independent identically distributed (iid) and independent of
A theory exists for analyzing more complicated graphs the signal. The structure of the wavelet transform leads to
[6], such as those obtained by linking state variables acrossvavelet domain noise that is uncorrelated, identically dis-
both time and scale, but it is beyond the scope of this papertributed within each scale, and independent of the signal.
Using a wavelet-Markov model for the signal prior
3 Model Training and Likelihood and an IMM for the noise prior, we apply an “empiri-
Determination cal Bayesian” estimation approach that automatically learns
the prior densities from the noisy data. The prior densi-
We have defined three probabilistic graphs for capturingties are used to find minimum mean-squared-error (MMSE)
the structure in a wavelet transform. To use these graphs fogonditional mean estimates[6; |w,, w,, . . . , wy,] for each
signal processing, two operations are of interest: signal wavelet coefficied;. The estimates are relatively
straightforward to compute, since the signal and noise pri-
. : - ors involve coefficients that are conditionally Gaussian [8].
model parameters to achieve a maximum-likelihood . : T ;
(ML) fit. I—!ence, the major task_o_f our approach is estimating the prior
signal and noise densities.

Likelihood determination: Given a fixed model, calculate Since the wavelet domain noise is generally not identi-

the probability of the observed wavelet data using the cally distributed across scalejfferent IMM noise priors
model. are required for each scale. If a noise-only observation is

available, we use it to estimate an IMM noise prior at each
Training is fundamental to any application. Once we scale. If only one noisy signal observation is at hand, we
have trained the model on a signal or class of signals, wefirst estimate a noise IMM in the finest scale, where the sig-
can apply it to tasks such as estimation, classification, prenal energy is assumed negligible. Then, using the finest-
diction (useful for compression), and synthesis. Likelihood scale noise IMM, we can easily deduce IMMs for the other
determination not only is useful for tasks such as detectionscales [8].
and classification, but also is a key component of training. Estimating the wavelet-Markov signal prior is a non-
We train our models by choosing parameters that max-trivial task, since we do not directly observe the signal but
imize the likelihood of the observed wavelet coefficiehts. rather signal in noise. We use a modified EM algorithm that
These parameters are the state transition probabilities anghaximizes the likelihood of the observsignal plus noise
conditional Gaussian variances. Unfortunately, the factas a function of the wavelet-Markov signal model. Exact de-
that we cannot observe the hidden state variables meangils of empirically estimating both the signal and the noise
that closed-form parameter estimates are unobtainable. Weriors are provided in [8].
circumvent this obstacle using Expectation Maximization
(EM) algorithms. Laplacian Noise Example: NonGaussian noise can ex-
For each of the three graphs discussed above, it can b&ibit properties quite different from Gaussian noise of the

shown that a specialized EM-type algorithm converges to aS@me power — much more “spikiness,” for example. Ad-
ditionally, the wavelet transform of iid nonGaussian noise
7o obtain reliable parameter estimates it is desirable to have multiplejg distributed differently in each scale, with the noise in

iid observatlons o_f thg eqtlre set of wavelet cpefflments. Often, however, coarser scales tending towards Gaussian by the Central
only a single realization is observed. To estimate the parameters in this™ . L
situation we average over wavelet coefficients assumed to be statisticaly-imit Theorem. Hence, wavelet-based de-noising algo-

similar, a practice known aging [5]. For details see [8]. rithms assuming iid Gaussian noise may perform poorly.

3. 7, , the variance of the wavelet coefficidit given

i,m?

S{is in statem.

Model Training: Given a set of training data, estimate the




30 30 5 Conclusions
The wavelet transforms of real-world signals and images
low 19 have residual structure that can be used to improve upon al-
gorithms that process wavelet coefficients independently ac-
0 0 cording to iid signal and/or iid Gaussian noise assumptions.
(@ o 05 1 (b) o 05 1 In this paper, we have modeled the dependencies between
30 30 wavelet coefficients that stem from the secondary properties
of the wavelet transform. We can interpret our approach in
10 10 the following way: The wavelet transform “almost decorre-
lates” the signal, removing all but the most local dependen-
-10 -10 cies for the probabilistic graph model to handle. Itis the fact
) © 05 1 d o 05 1 that the wavelet transform can almost decorrelate so many
) signals that makes our approach feasible.
Figure 4. Example of de-noising in white, nonGaussian We feel that the graph-theoretic framework presented

noise. (a) Length-1024 Blocks signal. (b) In Laplacian
noise, MSE = 8.0. (c) De-noised via SureShrink [1], MSE =
6.3. (d) De-noised via wavelet-based Bayesian estimation,
MSE = 1.9. For both algorithms, the Haar wavelet filter was
used to transform the signal, and the MSE’s were averaged
over 1000 Monte Carlo trials.

here could serve as a powerful new tool for wavelet-based
statistical signal and image processing, with applications
in signal estimation, detection, classification, compression,
and even synthesis. A key to future work is tapping into the
knowledge base that has already accumulated in statistics,
speech reagnition, artificial intelligence, and related fields.
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