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Abstract

Current wavelet-based statistical signal and image pro-
cessing techniques such as shrinkage and filtering treat the
wavelet coefficients as though they were statistically inde-
pendent. This assumption is unrealistic; considering the
statistical dependencies between wavelet coefficients can
yield substantial performance improvements. In this paper,
we develop a new framework for wavelet-based signal pro-
cessing that employs hidden Markov models to characterize
the dependencies between wavelet coefficients. To illustrate
the power of the new framework, we derive a new algorithm
for signal estimation in nonGaussian noise.

1 Introduction

Wavelets have emerged as an exciting new tool for sta-
tistical signal and image processing. The wavelet transform
is an atomic decomposition that represents a signalz(t) in
terms of its projectionswi onto shifted and dilated versions
 i(t) of a prototype bandpass wavelet function (t). The
wi are referred to as thewavelet coefficientsand measure
the content of the signal at various locations in time and fre-
quency (see Figure 1).

The joint time-frequency analysis effected by the wavelet
transform has some attractive properties that make it natural
for statistical applications, including estimation [1, 2, 3], de-
tection, and classification. We call these theprimary prop-
ertiesof the wavelet transform:

Locality: Each wavelet atom i is localized simultane-
ously in time and frequency. Therefore, wavelets can
match a wide range of different signal components,
from transients to harmonics.

Multiresolution: Wavelet atoms compress and dilate to an-
alyze at a nested set of scales. This allows the trans-
form to match both short-duration and long-duration
signal structures.
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Figure 1. Tiling of the time-frequency plane by the atoms
of the wavelet transform. Each box depicts the idealized
support of a wavelet atom i in time-frequency; the black
dot at the center corresponds to the wavelet coefficientwi.
Each different row of wavelet atoms corresponds to a dif-
ferentscaleor frequency band. (We run the frequency axis
down rather than up for later convenience.)

Compression: The wavelet transforms of real-world sig-
nals and images tend to be sparse.

Attention has focused onscalar processing of the
wavelet coefficients [1]. Scalar wavelet processing algo-
rithms are based on the primary properties above plus an
interpretation of the transform as a “decorrelator” that at-
tempts to make each wavelet coefficient statistically inde-
pendent of all others. If this were possible for all signals
and images, then simple scalar processing in the wavelet
domain would be optimal.

However, the wavelet transform cannot completely
decorrelate real-world signals and images — aresidual de-
pendency structurealways remains between the wavelet co-
efficients. In words, we have followingsecondary proper-
tiesof the wavelet transform:

Clustering: If a particular wavelet coefficient is
large/small, then neighboring coefficients are very
likely to also be large/small.

Persistence across Scale:Large/small values of wavelet
coefficients tend to propagate across scales.

Both of these empirical observations have been exploited
with tremendous success by the compression community
[4]. Our goal is to do the same for signal processing.
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Figure 2. A two-state Gaussian mixture model for a ran-
dom variableW . We denote the state variableS with a
white dot, the random variableW with a black dot. Illus-
trated are the Gaussian conditional pdf’s forW jS as well as
the overall mixture pdf forW . In our application, we model
each wavelet coefficientWi (each black dot in Figure 1) in
this way.

In this paper, we introduce the concept of probabilis-
tic graphs (specifically Hidden Markov models) for char-
acterizing the dependencies between the coefficients of the
wavelet transform. Our marriage of wavelet transforms and
Hidden Markov models yields a flexible framework for sta-
tistical signal and image processing that both matches the
properties of the wavelet transform and exploits the struc-
ture inherent in real-world signals and images. This frame-
work provides a natural setting for signal estimation, de-
tection, classification, and even synthesis. In particular, we
will use this new theory to develop a new algorithm for sig-
nal estimation in nonGaussian noise.

2 Wavelet-Markov Models

Recall the Compression property of the wavelet trans-
form. The transform of a typical signal or image consists
of a small number of large coefficients and a large number
of small coefficients. Thus, we can roughly modeleach co-
efficient as being in one of two states: “high” or “low.” If
we associate with each state a pdf — say a high-variance,
zero-mean density for the “high” state and a low-variance,
zero-mean density for the “low” state — the result is a two-
state mixture model for each wavelet coefficient.

In this paper, we will model each wavelet coefficient as a
random variableWi with a two-state (zero-mean) Gaussian
mixture density. Empirically, this model has proven both
effective and convenient [2, 3]. As we see from Figure 2,
this simple model is completely parameterized by the pmf
of the state variableSi, pSi(1); 1�pSi(1), and the variances
of the Gaussian pdf’s corresponding toeach state,�2

i;1; �
2
i;2.

We say that the state variables arehidden, because their val-
ues are not observed directly, but rather are gleaned from
the observed wavelet coefficients.

Based on the wavelet Clustering and Persistence Across
Scales properties, we expect probabilistic coupling between
the state variables. Simply put, these two properties suggest
that the state of a given wavelet coefficient is likely to be
high (low) if its neighbors across time and scale are high
(low). To capture this behavior, we introduce a Markovian

structure on the hidden states using a probabilistic graph
[6, 7]. The Locality and Multiresolution properties of the
wavelet transform suggest three simple graphs for charac-
terizing the local dependencies between the wavelet coeffi-
cients of Figure 1. In Figure 3 we illustrate these graphs,
which are formed by “connecting the dots” representing
the wavelet state variables. We call these graphswavelet-
Markov models.
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Figure 3. Wavelet-Markov models for capturing the sta-
tistical dependencies of the coefficients of a wavelet trans-
form. Each black dot represents a continuous wavelet coef-
ficientWi. Each white dot represents the (hidden) mixture
state variableSi for Wi. Removing all dashed connections
corresponds to the Independent Mixture Model. Connect-
ing white dots horizontally across time yields the Hidden
Markov Chain Model. Connecting white dots diagonally
across scales yields the Hidden Markov Tree Model.

Independent Mixture Model (IMM): Removing all con-
nections between state variablesSi in Figure 3 leads to the
model presented in [2, 3]. It treats the wavelet state vari-
ables (and hence the wavelet coefficients) as independent.

Hidden Markov Chain Model: Connecting the state
variablesSi horizontally in Figure 3 specifies a Markov
chain [5] dependency between the state variableswithin
each scale. This new model treats wavelet state variables
as dependent within each scale, but independent from scale
to scale.

Hidden Markov Tree Model: By connecting state vari-
ablesacross scalesin Figure 3, we obtain a graph with tree-
structured dependencies between state variables.

The Hidden Markov Tree Model matches both the
Clustering and Persistence across Scale properties of the
wavelet transform. Its structure is reminiscent of the ze-
rotree wavelet compression system [4], which exploits tree-
structured dependencies for substantial compression gains.

The Hidden Markov Tree Model has a natural parent-
child dependency interpretation, which is defined formally
by a directed tree graph [6, 7]. State variable dependencies
are modeled via state transition probabilities fromeach par-
ent state variableSi to its “children,” the two state variables
connected to it from below (if they exist). For example, in



Figure 3, state variablesS4 andS5 are both children ofS2,
and hence causally dependent onS2. Dependency is not
simply limited to parent-child interactions, however. State
variablesS4 andS5 may be highly dependent due to their
joint dependency withS2.

Let S�(i) denote the parent ofSi. Using a zero-mean
Gaussian mixture model for each wavelet coefficient value
Wi, the parameters for the Hidden Markov Tree Model are:

1. pS1
(m), the pmf for the rootS1.

2. �mr

i;�(i)
= pSijS�(i) (mjS�(i) = r), the probability that

Si is in statem givenS�(i) is in stater.

3. �2
i;m

, the variance of the wavelet coefficientWi given
Si is in statem.

A theory exists for analyzing more complicated graphs
[6], such as those obtained by linking state variables across
both time and scale, but it is beyond the scope of this paper.

3 Model Training and Likelihood
Determination

We have defined three probabilistic graphs for capturing
the structure in a wavelet transform. To use these graphs for
signal processing, two operations are of interest:

Model Training: Given a set of training data, estimate the
model parameters to achieve a maximum-likelihood
(ML) fit.

Likelihood determination: Given a fixed model, calculate
the probability of the observed wavelet data using the
model.

Training is fundamental to any application. Once we
have trained the model on a signal or class of signals, we
can apply it to tasks such as estimation, classification, pre-
diction (useful for compression), and synthesis. Likelihood
determination not only is useful for tasks such as detection
and classification, but also is a key component of training.

We train our models by choosing parameters that max-
imize the likelihood of the observed wavelet coefficients.1

These parameters are the state transition probabilities and
conditional Gaussian variances. Unfortunately, the fact
that we cannot observe the hidden state variables means
that closed-form parameter estimates are unobtainable. We
circumvent this obstacle using Expectation Maximization
(EM) algorithms.

For each of the three graphs discussed above, it can be
shown that a specialized EM-type algorithm converges to a

1To obtain reliable parameter estimates it is desirable to have multiple
iid observations of the entire set of wavelet coefficients. Often, however,
only a single realization is observed. To estimate the parameters in this
situation we average over wavelet coefficients assumed to be statistically
similar, a practice known astying [5]. For details see [8].

local maximum of the likelihood function [5, 9, 10]. More-
over, for these graphs, the Expectation step is equivalent to
likelihood determination. For details on the specific expec-
tation and maximization steps for the three different graphs
see [8].

4 Application to Signal Estimation

We now apply wavelet-Markov modeling to signal esti-
mation in additive whitenonGaussiannoise, extending the
work done in [11] for estimation in white Gaussian noise.
The estimation problem is expressed in the wavelet domain
aswi = �i + ni; wherewi, �i, andni denote the wavelet
coefficients of the observed data, the signal, and the noise,
respectively. We assume the noise in the signal domain is
independent identically distributed (iid) and independent of
the signal. The structure of the wavelet transform leads to
wavelet domain noise that is uncorrelated, identically dis-
tributed within each scale, and independent of the signal.

Using a wavelet-Markov model for the signal prior
and an IMM for the noise prior, we apply an “empiri-
cal Bayesian” estimation approach that automatically learns
the prior densities from the noisy data. The prior densi-
ties are used to find minimum mean-squared-error (MMSE)
conditional mean estimatesE[�ijw1; w2; : : : ; wn] for each
signal wavelet coefficient�i. The estimates are relatively
straightforward to compute, since the signal and noise pri-
ors involve coefficients that are conditionally Gaussian [8].
Hence, the major task of our approach is estimating the prior
signal and noise densities.

Since the wavelet domain noise is generally not identi-
cally distributed across scale,different IMM noise priors
are required for each scale. If a noise-only observation is
available, we use it to estimate an IMM noise prior at each
scale. If only one noisy signal observation is at hand, we
first estimate a noise IMM in the finest scale, where the sig-
nal energy is assumed negligible. Then, using the finest-
scale noise IMM, we can easily deduce IMMs for the other
scales [8].

Estimating the wavelet-Markov signal prior is a non-
trivial task, since we do not directly observe the signal but
rather signal in noise. We use a modified EM algorithm that
maximizes the likelihood of the observedsignal plus noise
as a function of the wavelet-Markov signal model. Exact de-
tails of empirically estimating both the signal and the noise
priors are provided in [8].

Laplacian Noise Example: NonGaussian noise can ex-
hibit properties quite different from Gaussian noise of the
same power — much more “spikiness,” for example. Ad-
ditionally, the wavelet transform of iid nonGaussian noise
is distributed differently in each scale, with the noise in
coarser scales tending towards Gaussian by the Central
Limit Theorem. Hence, wavelet-based de-noising algo-
rithms assuming iid Gaussian noise may perform poorly.
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Figure 4. Example of de-noising in white, nonGaussian
noise. (a) Length-1024 Blocks signal. (b) In Laplacian
noise, MSE = 8.0. (c) De-noised via SureShrink [1], MSE =
6.3. (d) De-noised via wavelet-based Bayesian estimation,
MSE = 1.9. For both algorithms, the Haar wavelet filter was
used to transform the signal, and the MSE’s were averaged
over 1000 Monte Carlo trials.
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Figure 5. Nonlinearities applied for de-noising Blocks of
Figure 4 at the (a) 2nd, (b) 4th, and (c) 7th scales of a 7-scale
wavelet transform, with the scale index increasing from fine
resolution to coarse resolution.

We illustrate this point in Figure 4, where we examine two
approaches for estimating the “Blocks” signal in Laplacian
noise. We compare our Bayesian approach using an IMM
signal prior2 and IMM noise priors (one at each scale) to
Donoho’s state-of-the-art SureShrink method [1], which is
based on a Gaussian noise assumption. It is clear from the
Figure that accurate modeling of the wavelet-domain noise
leads to reduced mean-squared error and improved visual
quality in the de-noised signal. The IMM noise priors lead
to similar improvements over empirical Bayesian estimation
with an iid Gaussian noise model.

Standard de-noising techniques [1] estimate the signal
wavelet coefficients�i by thresholding the noisy wavelet co-
efficientswi. Our Bayesian approach leads to threshold-like
nonlinearities that vary across scale. For the Laplacian noise
example, Figure 5 shows how these nonlinearities evolve
as a function of scale, adjusting to match signal and noise
properties such as heavier-tailed noise in the finer scales.

2Our IMM signal prior is a wavelet-Markov prior that assumes inde-
pendence between signal wavelet coefficients. The set-up thus focuses on
gains from improved noise modeling, rather than improved signal model-
ing, which was explored in [11].

5 Conclusions

The wavelet transforms of real-world signals and images
have residual structure that can be used to improve upon al-
gorithms that process wavelet coefficients independently ac-
cording to iid signal and/or iid Gaussian noise assumptions.
In this paper, we have modeled the dependencies between
wavelet coefficients that stem from the secondary properties
of the wavelet transform. We can interpret our approach in
the following way: The wavelet transform “almost decorre-
lates” the signal, removing all but the most local dependen-
cies for the probabilisticgraph model to handle. It is the fact
that the wavelet transform can almost decorrelate so many
signals that makes our approach feasible.

We feel that the graph-theoretic framework presented
here could serve as a powerful new tool for wavelet-based
statistical signal and image processing, with applications
in signal estimation, detection, classification, compression,
and even synthesis. A key to future work is tapping into the
knowledge base that has already accumulated in statistics,
speech recognition, artificial intelligence, and related fields.
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