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ABSTRACT

In this paper we address the problem of the blind recon-
struction of binary sequences transmitted by P sources,
sharing simultaneously the same frequency channel. This
is the situation in Space Division Multiple Access (SDMA)
systems, where an array receiver is used to discriminate the
spatial signatures of the sources. We exploit the geome-
try induced by the �nite nature of the sources alphabet in
order to derive a blind multichannel inversion algorithm.
This algorithm minimizes a generalized constant modulus
(GCM) cost function, subject to the constraints imposed
by the signal space geometry (geometric priors). We de�ne
the GCM cost function for the case of additive Gaussian
noise channels. We show that, except for a sign ambigu-
ity, the minimization of the GCM criterion has a unique
solution. Therefore, convergence to the global minimum
is guaranteed. Computer simulations illustrate the perfor-
mance achieved with the proposed method.

1. INTRODUCTION

During the last few years, results of research on array signal
processing techniques for multiuser wireless communication
systems have been published in di�erent scienti�que jour-
nals. The idea relies on the concept of SDMA systems,
where the spatial dimension is exploited by an antenna ar-
ray to discriminate the distinct radio channels (spatial sig-
natures) used by each source, thus tacking to its advantage
the complexity of the radio channel, in particular, the ex-
istence of multipath propagation. According to this con-
cept, several sources using the same carrier frequency can
also share the same time slot, provided that their respec-
tive spatial signatures are di�erent. This kind of medium
access technique has an obvious impact on the increase of
the capacity of wireless communication systems.
Several techniques have been developed to implement

blind SDMA shemes. In [2, 3] modi�ed versions of the pop-
ular constant modulus algorithm are presented. The major
problem with this kind approach is that, when using de-
scent gradient optimization algorithms, convergence to the
global minima of the speci�ed cost functions is not guar-
anteed. Moreover, for the case of noisy data, which is the
case of interest, the minima of those costs functions depend
on the signal to noise ratio (SNR). As a result the estimate
of the inverse channel is not accurate enough. Another ap-
proach is considered in [4]. This is based on the available
previous knowledge of the sources' alphabet and of its ge-
ometric representation: a hypercube as represented in Fig-
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ure 1(a). However, the algorithm that is described there
tries to estimate the geometry of the channel distorted ver-
sion of that hypercube, i.e., the parallelipiped represented
in Figure 1(b). This is too complicated because the pro-
cessing scheme has to deal with data whose structure is
completely unknown. Here, we exploit the concept of sig-
nal space, where the nice geometry in the alphabet space
can be recovered up to a rotation, see Figure 1(c). The
problem is then reduced to the estimation of that rotation,
su�ered by the hypercube representing the alphabet.
The paper is organized as follows. Section 2. dicusses

the determination of the array data representation in signal
space. In section 3., we introduce the signal space geometry
matched (SSGM) algorithm. This is based on a GCM cost
function, which speci�es a criterion for the estimation of
the data space hypercube. It is shown that this cost func-
tion is invariant with SNR, and that its minimization pro-
vides an unique solution. Techniques for the removal of the
inter-symbol interference, and for data reconstruction are
also described. The performance of the SSGM algorithm is
evaluated in section 4..

2. SIGNAL SPACE GEOMETRY

Consider the baseband complex vector

xk =Hak +wk; (1)

H being an (M � D); M > D, rank D complex matrix.
In general, the number of rows of H is given by M = NL,
where N and L are the number of array elements and the
number of time samples per symbol period, respectively.
For simplicity, and without any lost of generality of the
method introduced in the paper, we take L = 1. Also, we
de�ne D = P + Pisi, where P is the number of sources
and Pisi is the number of delayed replicas (intersymbol
interference-isi). We assume that data transmission is based
on binary phase shift keying (BPSK) modulation, thus ak is
a D-vector with binary entries (�1). Both H and ak can be

partitioned as follows: H = [Hs Hisi] and a
T
k =

�
sTk isiTk

�
.

Along the paper, we will use (�)T , (�)�, and (�)H, respec-
tively for transpose, complex conjugate, and complex con-
jugate transpose. Here sk includes the P source symbols
arriving through the direct propagation path, and isik col-
lects the interfering symbols arriving from secondary paths.
All other channel e�ects, such as propagation delays and at-
tenuations, spreading and reection losses, are imbedded in
H.
In the sequel, the following hypothesis are assumed: (i)

the P sources are jointly statistically independent, each
one generating independent and equally like binary sym-
bols, (ii) wk is a complex Gaussian noise vector with zero



H

H+

(a) Alphabet Space (b) Array Space

(c) Signal Space

QH H QH0
+ +=

Figure 1. Signal geometries in BPSK/ SDMA sys-
tems (D = 3)

mean and covariance matrix �2IM , IM denoting the M di-
mensional identity matrix, (iii) ak and wk are jointly inde-
pendent random vectors, and (iv) the channel matrix H is
invariant along K data samples. Notice that we do not as-
sume any prior knowledge about the parameters D, P , and
�2, neither about the channel matrix H. The only prior
that we have is the geometry of the sources' alphabet. In
fact, ak thakes values on a �nite alphabet with cardinal-
ity 2D, which speci�es a size 2 hypercube in the alphabet
space, as represented in Figure 1(a). The channel matrix H
maps this hypercube into an unknown hyper-parallelipiped
in array space, see Figure 1(b). In [4], an algorithm that ex-
ploits the geometry of this parallelipiped is presented. It is
derived for the noise free version of (1) and it provides joint
estimates ofH and the symbol time sequences. As in [1], we
propose to preprocess the array data, mapping it into the
signal space where the basic geometry of the sources alpha-
bet is recovered. This is also illustrated in Figure 1(c). In
signal space, the noisy data is clustered around the vertices
of a size 2 hypercube. To perform the data transformation,
we use an eigen analysis of the array data covariance ma-
trix (or, in practice, the sample covariance matrix estimated
from K data samples)

R =HH
H + �

2
IM ; (2)

yielding an estimate of H given by

H0 = VD:

Here, V is the matrix formed by the signal subspace eigen-
vectors of R, and D is a D-dimensional diagonal matrix
whose entries are the singular values of H. As it is well
known, this procedure also provides estimates of D and �2,
as �2 equals any of the M � D smallest eigenvalues of R.
Clearly,

H =H0Q; (3)

where Q is a unitary matrix. We de�ne the transformation

zk = H
+

0 xk;

and using eq(1) and eq(3) we get

zk = Qak + �k; (4)

where the noise covariance matrix is R� = �2D�2. This
means that the noise spherical simmetry is lost but, more
important than this, is the noise reduction achieved by can-
celling the noise components in the orthogonal space of the
columns ofH. Therefore, in signal space the SNR is greater
than in array space. Moreover, while in the array space,

channel inversion is an unconstrained problem, in the sig-
nal space we just have to estimate the unitary matrix Q,
whose columns specify the orientation of the size 2 hyper-
cube determined by the centroids of the data clusters, see
Figure 3(a) as an example. In the following section, we
present the Signal Space Matched Geometry (SSMG) algo-
rithm, which provides estimates of the columns of Q.

3. THE SSGM ALGORITHM

In [1], we present a solution for the problem of estimating
the columns of Q. This is based on a nearest neighborhood
clustering algorithm that estimates the centroids of D + 1
adjacent clusters, thus enabling to determine the D princi-
pal directions of the signal space hypercube. Here, we take
a di�erent approach consisting on estimating directly the
columns q1; : : : ;qD of Q using a generalized constant mod-
ulus (GCM) criterion. This criterion is speci�ed by the cost
function

J(w) = E

n�
<2

�
w
H
zk
	
� 1

�2
+=2

�
w
H
zk
	o

�

J�(w); (5)

subject to

WW
H =W

H
W = ID; (6)

the columns of W being D minimizers of (5). We de�ne

J�(w) =
3

2

�
w
H
w+<(wH

Efzkz
T
k gw

�)
�
w
H
R�w �

1

2
w
H
R�w+

3

4
(wH

R�w)2; (7)

where Efzkz
T
k g = QQT and R� = �2D�2. This later

quantity is estimated when the transformation that maps
the array space into the signal space is determined (see sec-
tion 2.), and the former can be estimated from the data
using the sample mean operator on the available K data
samples. It can be shown, after some persistent algebraic
work, that (5) is given by

J(w) = E

n�
<2

�
w
H
Qak

�
� 1

�2
+=2

�
w
H
Qak

�o
: (8)

Notice that, when compared with conventional CM ap-
proaches [3, 2], the GCM criterion (5), or its equivalent
(8): (i) instead of trying to recover the magnitude of the
symbols, it enables to reconstruct the sources alphabet and
(ii) it accounts for the noise statistics through J�(�). The
result of using this term appears in (8), which is theoreti-
cally free of the noise e�ects. Moreover, (iii) the constraint
in (6) matches the optimization criterion to the available
prior knowledge of the signal space geometry. Although
these are interesting characteristics of the GCM cost func-
tion here introduced, its most important property is given
by the following fact.

Fact 1: Let ak be a zero mean stationary random vec-
tor with D binary entries and covariance Ra = ID, and
Q = [q1; q2; : : : qD] a complex D dimensional unitary ma-
trix. Then (8) (or (5)) has precisely 2D equal minima cor-
responding to the minimizers �q1; �q2; : : : � qD. Ad-
ditionally, if the constraint (6) is superimposed, then the
minimization of (8) (or (5)) yields D minimizers which are
the columns of Q with a sign ambiguity, that is

argminwi=1;:::D
J(wi=1;:::D) = QT;
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Figure 2. Example of a GCM surface (D = 2).

where T is an arbitrary D dimensional permutation matrix
with �1 entries.

The proof of this fact is not trivial and, due to the space con-
straints of this paper, it will be presented elsewhere. In any
case, we show in Figure 2 a typical surface generated by (8)
for the case D = 2, where it is clear the presence of D pairs
of symmetric global minima. We emphasize that the sign
ambiguity associated with the estimates of the columns of
Q has no impact on symbol reconstruction, provided that a
di�erential source encoding scheme is used. In Figure 3(b),
we illustrate through an example the ability of the SSGM
algorithm to estimate the hypercube speci�ed by Q. No-
tice that, in spite of the moderately large dispersion of the
signal space data points, the estimated hypercube is prac-
tically coincident with the actual one.

Removal of the ISI. As discussed in section 2. for H and
ak , the matrix Q = [Qs Qisi] where Qs is the (D � P )
channel matrix in signal space associated with the P -vector
symbols sk transmitted by the P sources. To estimate these
symbols it is necessary to remove the ISI components of the
transformed data (4). To do this, we begin by noting that
being

Rz(1) = E
�
zkz

H
k�1

	
;

the lag 1 covariance matrix of the signal space data, then

A = Rz(1)Rz
H(1) = QisiQ

H
isi: (9)

It is obvious that any column of the unitary matrix Q ver-
i�es

q
H
i Aqi =

n
1 if qi is a column of Qisi

0 if qi is a column of Qs
(10)

In practice, since the lag 1 sample covariance matrix is
used, we have to select as columns of Qs the P minimiz-
ers qHi Aqi. The ISI free signal space data can be obtained
from (4) using the transformation

yk = Q
H
s zk

= sk + uk (11)

where the zero mean complex noise process uk has an al-
ready estimated covariance matrix Ru = �2QH

s D
�2Qs.
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Figure 3. Signal geometries in BPSK/SDMA sys-
tems (D = 3)

Symbol reconstruction. Exploiting the �nite nature of
the known sources' alphabet A, i. e., the set of 2P binary
code vectors cp where sk takes values, and being known the
statistics of the Gaussian noise process uk, the optimum
symbol reconstruction strategy is provided by the maximum
a posteriori (MAP) criterion. Thus, for each time instant
the selected symbol is given by

sk = argmincp2A
�
y
H
k � c

H
p

�
Ru

�1 [yk � cp] : (12)

In this section we described the SSGM algorithm which,
estimates the signal space data geometry. A method to
remove the ISI and the MAP symbol detector were also
presented. In the following section, the performance of our
algorithm is evaluated based on computer simulations. We
also compare our results with those obtained with the op-
timum receiver, where the channel matrix H and the noise
statistics in (1) are known.

4. COMPUTER SIMULATIONS

In the simulations we used the channel matrix H speci�ed
in tables 1 and 2. The number of sources is P = 3. The two
�rst columns of H correspond to source 1 (one ISI replica),
and the sixth column corresponds to source 3. To evaluate
the performance of the SSGM algorithm, we present the
results obtained with a Monte Carlo simulation consisting
of 100 independent runs of the channel. In each run, a block
of K = 2000 array samples was generated. Figure 4 shows

the Frobenius norm of the error Qs � cQs associated with

the estimate cQs, as function of SNR

SNR =
E
�
kHakk

2
	

E fkwkk2g
:

It can be seen that the SSGM algorithm provides accurate
estimates of Qs even for moderate values of SNR. Notice
that the de�nition of SNR is a global measure accounting
for the power contributions of all arrivals. As an example,
we show in Figure 5 the ability of our method to remove the
ISI components in the available data. This corresponds to a
situation where SNR= 10 dB and, as we can see, the values
of the minima and of the maxima �t with those in (10).
In Figure 6, we present the bit error rates (ber) obtained
for each source. The solid lines correspond to the optimum
receiver, i.e., that designed based on previous knowledge
of the cahnnel matrix, and the dashed lines were obtained
from the Monte Carlo simulation. Its clear that, as ex-
pected, the ber strongly depends on the channel used by
each source. On the other hand, the experimental results
are very close to the optimum bers. As a �nal comment,
we can say that the preliminary simulation results here pre-
sented show the e�ciency of our algorithm to blindly dis-
criminate the present sources, even in the presence of ISI.



h1 h2 h3
1:615 � 0:012i 0:948� 0:753i 1:336� 0:009i

�0:676 + 0:376i �0:323 + 0:737i 0:825 + 0:261i
0:987 � 0:305i 0:785� 0:389i 0:057 + 2:044i

�0:125 + 0:951i �0:857 + 1:126i �1:425� 0:554i
�0:087 � 0:209i 0:257� 0:916i 0:480� 0:101i
0:349 + 0:716i �0:794 + 0:723i 0:613� 0:250i

�0:996 + 0:209i 0:628� 1:442i 0:255 + 2:075i
0:531 � 0:208i �0:113 + 1:053i �1:774� 0:132i

�1:215 + 0:744i 0:676� 1:027i �0:370� 0:261i
0:351 � 1:306i �0:291 + 1:653i 0:257� 1:071i

Table 1. First 3 columns of H
h4 h5 h6

�0:861 + 1:506i �0:802 + 0:966i �0:052� 0:273i
0:858 � 0:450i 1:106 + 0:986i �0:728� 1:641i

�0:691 + 0:354i 0:805 + 0:495i �1:195 + 0:335i
0:091 + 0:253i 1:888� 0:720i �1:209� 0:262i
0:828 + 0:949i �0:116� 1:165i �0:806 + 1:562i
0:637 � 1:678i 0:176� 1:107i �0:069 + 0:696i

�0:982 + 0:551i �1:460� 0:078i 0:527 + 1:352i
0:711 � 0:389i 0:377 + 0:435i 0:895 + 0:055i

�0:357 � 0:289i �0:172 + 0:559i 0:710 + 0:017i
�0:856 � 0:505i 1:668� 0:407i 0:335� 0:613i

Table 2. Last 3 columns of H
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