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ABSTRACT

This paper explains how fractional cyclic moments of
CPFSK signals can be used in adaptive beamforming. It is
shown that CPFSK signals have non-zero fractional cyclic
moments because they generate spectral lines when they
are raised to the inverse of its modulation index, which is
generally a fractional number. To exploit this property, an
optimization criterion is proposed to compute the antenna
coe�cients that maximize the output SINR. The resulting
technique is blind because it does not need to know the
transmitted symbols: only the carrier frequency, the sym-
bol rate and the modulation index is required.

1. INTRODUCTION

Continuous Phase Frequency Shift Keying (CPFSK) is a
nonlinear modulation method with memory widely used in
wireless digital communication systems. The complex rep-
resentation of a CPFSK signal, x(t), is the following [1]

x(t) = A exp
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where A is the signal amplitude, fc is the carrier frequency,
h is the modulation index and d(t) is a PAM signal given
by

d(t) =
X
k

Ikg(t� kT ) (2)

where T is the symbol period, g(t) is a rectangular pulse of
duration T and amplitude 1=2T and the symbols Ik are the
amplitudes which result of mapping digits of the informa-
tion sequence to the amplitude levels f�1;�3:::;�(M�1)g.
Similarly to most communication signals, x(t) can be

modeled as a cyclostationary random process. This fact
can be succesfully used to select the coe�cients of an an-
tenna array in order to remove cochannel interferences.
Cyclostationarity-based methods are capable of extracting a
desired signal from the array output using only the informa-
tion contained in the 
uctuation frequencies of its statistical
averages. The advantages of these methods are remarkable:
they do not require the a priori knowledge of the desired
signal steering vector [2], they do not need a reference sig-
nal [2] and they do not su�er from capture problems as the
Constant Modulus (CM) beamformer [3].
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Existing approaches [4, 5, 6] make use of the periodici-
ties of the desired signal autocorrelation function and, ini-
tially, they can be applied to extract CPFSK signals from
an array output. However, these approaches are computa-
tionally very complex since they are based on solving gen-
eralized eigenvalues problems [4] or �nding matrix pencils
[5]. Even though simpler adaptive implementations have
been proposed [4, 6], these latter fail to work when there
are interferences with the same cyclostationarity properties
as the desired signal and multipath propagation.
In this paper we describe a new technique for adap-

tive beamforming which uses the cyclostationary nature of
CPFSK signals in a di�erent way. The technique utilizes
the fact that CPFSK signals generate spectral lines when
they are raised to a fractional number which is the inverse of
its modulation index. This property arises because certain
fractional statistical moments of CPFSK signals are peri-
odic functions of time or, equivalently, because CPFSK sig-
nals have non-zero fractional cyclic moments at certain fre-
quencies. To exploit this property, a new optimization cri-
terion involving Higher Order Statistics (HOS) is proposed
to take advantage of the statistical independence between
the desired and the unwanted (noise and interferences) sig-
nals. In addition, optimum weights can be computed using
a simple stochastic gradient algorithm.
This paper is organized in �ve sections. Section 2 explains

the spectral line generation property of CPFSK signals.
Section 3 presents the optimization criterion that makes
use of this property. In section 4 simulation results are pre-
sented. Finally, section 5 is devoted to the conclusions.

2. FRACTIONAL CYCLIC MOMENTS

A continuous-time signal x(t) generates a spectral line with
frequency � when it passes through the nonlinearity (�)r if
and only if the r-th order cyclic moment de�ned as

m
�
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exists and is nonzero [7]. The operator h�i denotes the time
average operation and r is a real number not necessarily
integer. In this case, the Power Spectral Density (PSD)
of xr(t) contains a spectral line at frequency � with an

amplitude jm�
rxj

2.
The existence of these cyclic moments is a consequence

of the cyclostationary nature of x(t). It can be demon-
strated that, under certain conditions, m�

rx correspond to



the Fourier series coe�cients of the statistical fractional mo-
ment

mrx(t) = E[xr(t)] =

Z
1

�1

x
r(t)f(x; t) dx (4)

where E[�] denotes the statistical average operation and
f(x; t) is the �rst order density function of x(t).
Next, we are going to show that a CPFSK signal contains

nonzero fractional cyclic moments of order r = 1=h where
h is the modulation index. This is equivalent to show that
a CPFSK signal generates spectral lines when it is raised to
the fractional number r = 1=h. Let us start noting that the
PSD of a M -ary CPFSK signal contains M spectral lines
when its modulation index is equal to one [1]. In general,
a CPFSK signal, x(t), will have an amplitude A, a car-
rier frequency fc and a modulation index h di�erent from

one. However, note that x1=h(t) is also a CPFSK signal

but with an amplitude A1=h, a carrier frequency fc=h and
a modulation index equal to one. Therefore, the PSD of

x1=h(t) contains M spectral lines. From the PSD calcula-
tions presented in [1], it is straightforward to show that the
frequency of these spectral lines is given by

fi =
fc

h
+

M � 1� 2i

2T
i = 0; � � � ;M � 1 (5)

Moreover, the amplitude of these spectral lines can also be
computed from the results in [1]. These are the values of
the fractional cyclic moments

jm�=fi
1=h x

j2 =
�
1

M
A
1=h
�2

i = 0; � � � ;M � 1 (6)

Figure 1 and 2 show the PSD of a quaternary CPFSK
signal x(t) before and after being raised to 1=h. Observe

that four spectral lines appear in the PSD of x1=h(t).
Fractional moments are not the only statistical averages

that are periodic functions of time for a CPFSK signal. It
is well-known that the autocorrelation function is also a
periodic function of time with a fundamental period equal
to the symbol period, T . This means that the PSD of z(t) =
x(t)x�(t+ �) contains spectral lines at integer multiples of
the symbol rate fs = 1=T . However, it is important to note

that these spectral lines are weaker than those in x1=h(t) as
can be seen in �gure 2.
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Figure 1. PSD of a quaternary CPFSK signal, x(t),
with h = 0:75)
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Figure 2. PSD of x1=h(t) and z(t) = x(t)x�(t+ T=2)

3. OPTIMIZATION CRITERION

To exploit the above property in adaptive beamforming,
we propose that the coe�cients w of an antenna array be
selected in order to minimize the following cost function

J =< jej2��t � y
r(t)j2 > (7)

where y(t) = wHx(t) is the array output, r is a fractional
number equal to the inverse of the desired signal modulation
index and � is one of the frequencies fi where the desired
signal contains a non-zero r-th order cyclic moment. This
cost funcion is the Mean Squared Error (MSE) between a
complex exponential and the array output after the non-
linearity (�)r. This optimization problem is similar to that
proposed in [8] for linear digital modulations (ASK, PSK
and QAM) where integer values of r were used. In [8] it
was demonstrated that the beamformer performance at the
minima when r = 2 correspond to the optimal extraction
of the desired signal in the sense that the Signal to Inter-
ference and Noise Ratio (SINR) is maximized. Simulations
presented in the following section show that this result also
holds true for fractional values of r.
Another advantage of our approach is that optimum

weights can be computed using a simple adaptive algorithm.
A reasonable way to compute the optimum coe�cients w
is the steepest descent method

w(n+ 1) = w(n)� �rwJ (8)

where � is the algorithm step size and rwJ represents the
complex gradient of J with respect to w. In our case rwJ
is

rwJ = �
1

h
< e�(n)y(

1

h
�1)(n)x(n) > (9)



where x(n) is the array input and e(n) = ej2��n�y1=h(n) is
the error signal whose variance we want to minimize. Sub-
stituing the time average in (9) by its instantaneous esti-
mate we obtain the following stochastic gradient algorithm

w(n+ 1) = w(n) +
�

h
e�(n)y

1

h
�1(n)x(n) (10)

It is interesting to note that implementation of this algo-
rithm only requires the modulation index h and the fre-
quency �. Since from (5) the value of � depends on h, fc
and T , only these three parameters are required to extract
the desired signal. Note that this information is always
available at the receiver since it is necessary to perform de-
modulation. Therefore, this algorithm can be considered
blind because the knowledge of the transmitted symbols is
not required.
Implementation of (10) typically requires raising a com-

plex number to a fractional exponent. This operation is
carried out as follows

z = �(z)ejarg(z) ) z
r = �

r(z)ej arg(z) r (11)

where r is any real number. It should be mentioned that
when computing arg(z) we cannot use a conventional arc-
tangent subroutine. This type of subroutines give us the
principal value of a complex number, ARG(z), which is
within the interval (��; �]. The relationship between the
true value of the phase, arg(z), and its principal value is

arg(z) = ARG(z) + 2�k (12)

where k is an integer. However note that for an arbitrary
real number r

e
j arg(z) r 6= e

j ARG(z) r
e
j2�k r (13)

Therefore, the principal value of the phase cannot be used.
To compute arg(z) it is necessary an unwrapping phase
algorithm such as the one described in [9].
The cost function that we are minimizing is not a

quadratic form of w. This raises the question of whether
there are undesirable stationary points that may impair the
convergence of the adaptive algorithm. The analysis in [8]
shows that for r = 2 the cost function (7) is free of un-
desirable minima for the environments typically found in
communications. Analysis for fractional values of r turns
out to be rather involved and has not been performed yet.
However, simulations only showed the existence of undesir-
able minima in multipath scenarios.

4. SIMULATION RESULTS

Computer simulations were carried out to illustrate the per-
formance of the proposed method. We considered a 10-
elements uniform linear array whose spacing is half wave-
length. The array input signals are sampled at a rate �ve
times faster than the symbol rate of the desired signal.
In the �rst computer experiment we considered a simple

environment with one binary CPFSK signal and Gaussian
noise. The input SNR is 3 dB and the Direction Of Ar-
rival (DOA) is 0�. The algorithm step-size is 10�4. Figure
3 plots the time evolution of the output SNR for two dif-
ferent values of the modulation index. It can be seen that
the algorithm converges to the maximum SNR solution in
less than 100 symbols. Figure 3 also plots the SNR for
the adaptive implementation of the Cross-SCORE method
described in [4]. A delay � = T was considered since this
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Figure 3. Time evolution of output SNR: a) Pro-
posed approach with h = 2=3, b) Proposed approach
with h = 2=5 c) Cross-SCORE.

Signal Symbol Rate Input SNR Direction

Desired 1=5 5 dB 0�

Interf # 1 1=8 10 dB 30�

Interf # 2 1=10 15 dB �30�

Table 1. Interference environment parameters

corresponds to the maximum amplitude of the spectral lines
in x(t)x�(t+T ). Rate of convergence is slower because spec-

tral lines in x(t)x�(t+ T ) are weaker than in x1=h(t).
In the second computer experiment we considered three

binary CPFSK signals with the same modulation index
(h = 2=3) arriving at the antenna. The parameters of the
signals can be seen in table 1. Figures 4 and 5 plot the
output SINR for the proposed algorithm (� = 3 � 10�6)
and Cross-SCORE. In �gure 4 the symbol rates are those
in table 1 and interferences have cyclostationary proper-
ties di�erent from the desired signal. Again, the maximum
SINR is achieved in less than 100 symbols while conver-
gence of the Cross-SCORE is slower. In �gure 5 the three
CPFSK signals have the same symbol rate and, as a con-
sequence, interferences generate spectral lines at the same
frequencies as the desired signal. In this case, the proposed
approach is still able to extract the desired signal whereas
Cross-SCORE fail to work. This is because our approach
makes use of Higher Order Statistics and is able to exploit
the statistical independence between the desired signal and
the interferences.
In the third simulation experiment a multipath environ-

ment was considered. The desired signal has an input SNR
of 30 dB and arrives at the antenna through four di�er-
ent paths whose features are indicated in table 2. In this
environment performance is more adequately evaluated in
terms of the MSE between the transmitted signal and the
array output. Figure 6 plots a comparison between the MSE
achieved with the proposed approach and the conventional
LMS algorithm. It can be seen that our method is not ca-
pable of achieving the minimum MSE and therefore it does
not combine the multipath signals in an optimal way.
It is important to note that approaches to blind adap-

tive beamforming similar to ours, like the CM beamformer
[10], perform like a spatial equalization in multipath scenar-
ios and achieve the Minimum MSE solution [8, 10]. How-
ever, these works always assume linear modulations with-
out memory where samples of the desired signal taken at
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Figure 4. Interferences with di�erent symbol rate:
a) Proposed approach, b) Cross-SCORE.
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Figure 5. Interferences with the same symbol rate
as the desired signal: a) Proposed approach with
h = 2=3, b) Cross-SCORE.
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Figure 6. Time evolution of the MSE in the multi-
path scenario.

Multipath Direction Delay Attenuation

# 1 0� 0 1
# 2 20� 4T 1:1e�j0:56�

# 3 �40� T 0:40ej0:42�

# 4 �20� 4T 0:86ej0:11�

Table 2. Multipath environment parameters

the symbol rate are statistically independent. This hypoth-
esis is not satis�ed in our case since CPFSK is a modula-
tion method with memory. We conjecture that this is the
reason why our method presents undesirable performance
in multipath scenarios. In fact, simulations show that the
CM beamformer does not achieve the Minimum MSE for
CPFSK signals in this type of environments.

5. CONCLUSIONS

In this paper we have investigated how CPFSK signals gen-
erate spectral lines when they are raised to the inverse of its
modulation index. This is because CPFSK signals contain
non-zero cyclic moments. We have also proposed an opti-
mization criterion to successfully use this property in adap-
tive beamforming. The analysis of the stationary points
of the proposed cost function is very involved and simula-
tion results were presented instead. Simulations revealed
that the algorithm maximizes the output SINR in scenarios
where Gaussian noise and statistical independent interfer-
ences are present even when there are interferences with the
same cyclostationary properties as the desired signal. No
undesirable minima were observed in these environments.
Unfortunately, simulations showed that the method does
not work adequately in multipath scenarios since undesir-
able minima exist in this case.
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