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ABSTRACT

Contrast-based separation of sources have a number
of advantages. Among others, they are optimal (in a
precise sense) in presence of noise of unknown statistics.
Here a new contrast is proposed that allows not only
to obtain the optimal solution analytically, but also
yields better performances in terms of variance of the
estimated mixing matrix. This contrast needs source
kurtosis to have the same sign, and is thus appropriate
to multichannel blind equalization in communications.

1. INTRODUCTION

Consider the following observation model

y(t) =

1X
k=�1

H(t � k)s(k) +w(t); (1)

where y(t), s(t) and w(t) are N�dimensional random
processes with �nite moments up to order 4, and with
values either in the real or the complex �eld. y(t)
stands for the observation, s(t) for the sources of in-
terest, and w(t) for an additive noise. Sources si(t)
are assumed to be mutually independent up to order
4. The problem is to recover the source processes si(t)
from the sole observations yj(t). It is often referred to
as the \Source Separation" problem.
A large number of approaches have been proposed

to this problem, including (i) adaptive algorithms [10]
[11] [12] [18] [19], and closed-form solutions based on
(ii) second order statistics only [9] [15] [16], (iii) higher
orders only [7] [5], or (iv) making use of both second
and higher orders [2] [4] [8] [13] [17]. This is of course
not an exhaustive list, but additional references may
be found therein.
Some years ago, the concept of contrast has been

proposed for the purpose of multichannel blind identi-
�cation of linear mixtures [4]. This type of approach
has been shown to have an excellent behavior compared
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to the other approaches recently proposed [1] [3]. The
principle, originally devised for narrow-band mixtures,
also extends to wide-band convolutional mixtures [5].

The interest of maximizing a contrast, over cumu-
lant matching techniques for instance, is that all com-
ponents are treated in a symmetric fashion, and that
the solution can pretend to some optimality in presence
of noise with unknown statistics (even non Gaussian).

Thus, contrasts are attractive in presence of un-
known noise. In particular, when statistics (e.g. cu-
mulants) are estimated over a short integration length,
one can consider that we have to deal with the presence
of a non Gaussian noise.

Similarly, interferences may be incorporated in the
non Gaussian noise e�ect when sources are sought to
be extracted. This is always the case when an unknown
transformation is identi�ed by applying a sequence of
plane rotations [2] [4].

2. NOTATION AND CONTRASTS

The present contribution concerns narrow-band multi-
channel mixtures, so that the following complex static
model will be subsequently considered:

y = H s+w: (2)

If z is a complex vector-valued random variable, we
de�ne its cumulant tensors (of even order) as: gz;ijkl =
cumfzi; z�j ; z�k; zlg, gz;ij = cumfzi; z�jg, where super-
script (�) denotes complex conjugation. The kurtosis of
a scalar variable si is de�ned as as 
s;i = gs;iiii=g

2
s;ii. It

is assumed throughout that sources are non Gaussian,
and that their kurtosis have the same sign, denoted !.

It had been suggested in [4] to �nd an unknown
linear transform, F , aiming at inverting H, by max-
imizing a contrast. One of the contrasts recommended
was the sum of the squares of the marginal standard-
ized cumulants of the output, z = F y. It is sub-
sequently assumed that both H and F are unitary,
which means that the standardization has been per-
formed already in a perfect manner (by using the



second-order statistics for instance). In fact, the gen-
eral problem de
ates to the latter if the signal co-
variance is exactly known. Under this condition, the

functional: �2(Fy) =
PN

n=1 g
2
z;nnnn: is a contrast,

since gz;ij = �ij [4]. Yet, one can also show [14] that

�1(Fy) = !
PN

n=1 gz;nnnn is a contrast, if source kur-
tosis 
s;i have all the same sign !, which is the case in
radio communications. More precisely, following the
de�nition of a contrast in [4], 8A unitary and 8z with
independent components we have

�1(Az) = !

NX
j=1

gz;jjjj

NX
i=1

jaijj4 � �1(z): (3)

Indeed, since A is unitary, 8j, PN

i=1 jaijj2 = 1 and

then 8j, PN
i=1 jaijj4 � 1. Finally because 8j, gz;jjjj 6=

0, the equality holds in (3) i� 8j, PN
i=1 jaijj4 = 1.

Since A is unitary, this is possible only if A is a scaled
permutation.
The maximization of !�1(Fy) over the group of uni-

tary matrices is di�cult, and one can either resort to
some iterative algorithm, or proceed pairwise, as origi-
nally suggested in [4]. The great advantage of the latter
procedure is that the 2 � 2 problem is much simpler,
and admits an analytical solution.
However, if �2 could be maximized easily in the case

of real orthogonal transforms, the complex case was
much more computationally demanding, though theo-
retically obtainable in polynomial time [4]. From this
point of view, the JADE algorithm proposed in [2] was
less computationnally demanding in the complex case.
Contrary to �2, it is shown here that the absolute max-
imum of !�1 can be found within a very reasonable
number of operations, even in the complex case.

3. ALGORITHM

As explained in detail in [4], the determination of a uni-
tary mixing matrix can be carried out by determining
a sequence of Givens complex rotations of the form:

Q =
1p

1 + ���

�
1 �

��� 1

�
(4)

The contrast functions �i, i = 1; 2, are maximized at
every step and increase monotically. The procedure
is similar to the one originally proposed by Jacobi for
diagonalizing Hermitian matrices. The main di�culty
is to �nd at each step the absolute maximum of the
contrast with respect to variable �.
In this section, we shall thus restrict ourselves to the

case of a 2-dimensional observation in presence of an
arbitrary number of sources, and look for a transform
aiming at inverting the mixture (4):

z = Q y: (5)

If all variables were real, then the absolute maximum
of !�1 or �2 would be computable only by rooting a
polynomial of degree 2 and 4, respectively. But in the
complex case things are more complicated, and it is
a kind of miracle that the maximum of !�1 can be
computed just by rooting a polynomial of degree 3.

3.1. Expression of contrast �1

From the multilinearity property of cumulants, �1

can be rewritten as a function of �, ��, and (standard-
ized) cumulants of y. If � and �� could be considered
as independent variables, then �1 would be the ratio
of two homogeneous polynomials of global degree 8.
Introduce the auxiliary variable � = � � 1=��. This

de�nes a bijection between the values of � in the unit

disk, j�j � 1, and lC . In fact, noting | =
p�1, if � def

=

r e|', 0 � r � 1, and �
def
= Re|�, 0 � R, then:

R =
1

r
� r; r =

�R+
p
R2 + 4

2
:

It turns out that, because of symmetry properties, con-
trast �1 can also be expressed as a rather simple func-
tion of �:

�1(Qy)
def
= ��1(�) = (��� + 4)�1[a ��� + 4<fb e|� �g

+4<fd e|� �

��
g+ 2 f ]; (6)

with, assuming a; f 2 IR and b; d 2 IR
+:

a
def
= g1111 + g2222;

b e|�
def
= g2122 � g1112;

d e|�
def
= g2112;

f
def
= 4 g1122+ g1111+ g2222:

For convenience, also denote  
def
= � + � and �

def
=

� � 2 �. Then a simpler expression of the contrast is:

��1(Re
|�) =

aR2 + 4bR cos + 4d cos(2 + �) + 2 f

R2 + 4
(7)

When they are not at in�nity, stationary points in
(R;�) cancel the two partial derivatives:

b cos (R2 � 4) + (2d cos(2 + �) + f � 2a)R = 0 (8)

b sin R+ 2d sin(2 + �) = 0 (9)

At in�nity, ��1(1) = a, and the solution is just � = 0,
that is the identity rotation.

3.2. Computation of the phase of �

Generically � 6= 0, and R can be eliminated between
(8) and (9). It is then very convenient to use the vari-

able T
def
= tan( =2), as now demonstrated. After some
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manipulations, one ends up with the fact that the op-
timal value of T is a root of a polynomial of degree 8,
h(T ) =

P8

i=0mi T
i, whose coe�cients are:

m8 = (�1 + cos2�)d2

m7 = (�f + 2a)d sin�+ 6d2 sin� cos�

m6 = (6� 14 cos2�)d2 + (�8a+ 4f)d cos�+ 4b2

m5 = (�10a+ 5f)d sin�� 14d2 sin� cos�

m4 = 0; m3 = m5; m2 = �m6; m1 = m7; m0 = �m8:

Candidates for the phase of � are consequently of the
form �i = 2arctan(Ti) � �. This would be of limited
interest if it was not possible to root h(T ) in a simple
fashion. But it turns out precisely that h(T ) = T 3(T 2+
1) p(T � 1

T
), where p(X) is the following cubic:

p(X)
def
= m8X

3+m7X
2+(m6�2m8)X+m5+m7 (10)

It is indeed a great surprise. The polynomial h(T )
can thus be rooted in IR completely analytically (e.g.
by Cardan's method).

3.3. Computation of the modulus of �

Now, once we have computed a reduced number of
candidates �i, the goal is to associate a modulus, Ri,
with each of them. This is easy since we can use either
(8) or (9), depending on whether sin is small or not.
If sin is small, it is more suitable for conditioning
reasons to utilize (8). Yet, this equation admits at
most one positive real root, given by:

R = [��+
p
�2 + 16]=2; � =

f � 2a+ 2d cos(2 + �)

b cos 

3.4. Genericity

It has been assumed that b 6= 0 and sin� 6= 0. This
is true in the generic case. If one of these quantity
vanishes, one can show that the solution in � becomes
much simpler. For reasons of space, this is not reported
here, but the complete matlab code is accessible via
internet4.

4. COMPUTER RESULTS

Our performance criterion is a simpli�ed version of the
\gap" de�ned in [4]:

�(H; Ĥ) =
X
i

j
X
j

jDij � 1j2 +
X
j

j
X
i

jDij � 1j2

+
X
i

j
X
j

jDijj1 � 1j+
X
j

j
X
i

jDijj2 � 1j:

where D
def
= FH, and F = Ĥ�1. Figure (a) shows the

mean gap obtained with contrasts �1 (solid) and �2

(dashdot) in the real case, over 1000 Monte Carlo trials,
for various data lengths and SNR's. Figure (b) reports
the corresponding standard deviations. The sources
were both PAM4 signals taking values in f�1;�3g, and
the mixing matrix H was a Givens rotation of angle
�=4. There is a visible advantage of �1 over �2.
Figures (c) and (d) show the mean and standard de-

viation of the gap obtained with �1 in the complex
case, averaged over 200 Monte Carlo trials. Figure (e)
is the eye diagram of a trial run with SNR 20dB and
data length 500. In that case, two 16-QAM sources
have been mixed by a Givens rotation of angle �=5 and
phase ej�=6.

5. CONCLUDING REMARKS

As shown by the computer simulations, the maximiza-
tion of �1 yields better results than �2, for short
data records and in presence of Gaussian noise. This
may be very attractive in nonstationary environments.
In fact, most adaptive algorithms require a fairly large

4
Connect to http://wwwi3s.unice.fr/~comon



200 400 600 800 1000 1200 1400 1600 1800 2000
10

−4

10
−3

10
−2

10
−1

Integration length

G
ap

(c) Mean of gap C
 SNR

 (dB)

   5

  10

  15
  20
  Inf

200 400 600 800 1000 1200 1400 1600 1800 2000
10

−4

10
−3

10
−2

10
−1

Integration length

G
ap

(d) Standard deviation of gap C
 SNR

 (dB)

   5

  10

  15
  20

  Inf

number of iterations before an acceptable gap between
H�1 and F can be reached. Experiments with non
Gaussian noise are being completed. Comparisons with
JADE will be reported in [6].
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