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ABSTRACT

When sequentially separating a linear combination of
co-channel digital signals, it is necessary at each step to
test the validity of the currently estimated signal prior to
proceeding to extract the next one. We describe a proce-
dure for use with sequential algorithms which uses a dea-
tion-based approach combined with a simple test statistic.
The deation step removes the contributions of the cur-
rently identi�ed signals. The simple test statistic takes into
account the error terms introduced into the data by the
deation. The method has been successfully applied in an
existing sequential estimation algorithm.

1 INTRODUCTION AND PROBLEM

FORMULATION

The general source separation problem has been studied
for some time, see [1] for a good discussion and bibliogra-
phy. More recently, the problem has been specialized to
the case of digital signals, [2, 3, 4, 5, 6] for example. These
types of algorithms have applications to demodulation of
multiple co-channel digital signals which arise in spatial-
division-multiple-access and cellular telephony. All of these
algorithms simultaneously estimate all of the multiple co-
channel signals.
In this paper, we consider a problem motivated by an al-

gorithm which sequentially separates an instantaneous mix-
ture of digital signals. Suppose that we have an algorithm
which can estimate one signal from the mixture of digital
signals. (The algorithms in [7, 8] are the motivating ex-
amples for this paper.) As each signal is estimated, it is
\removed" from the instantaneous mixture and a new \de-
ated" problem of lower dimension is formed, and the pro-
cess is repeated. At any given stage, the estimated signal
may be faulty; in particular, the fault may be due to conver-
gence of the estimation algorithm to a non-global optima.
Therefore, it is necessary to test each estimate for validity.
This testing is complicated by the fact that correlations
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among the signals introduce an additional error term into
the deated problem. In this paper, we describe a deation
method and derive a simple validity test for each sequential
estimate which takes this signal correlation into account.

We consider the problem

X = AS+WV

where X is a d�N matrix of known data, A is a full-rank
d�d matrix, S is a deterministic full-rank d�N signal ma-
trix drawn from a common digital alphabet, W is a known
full-rank d �m matrix, and V is a m �N matrix of i.i.d.
Gaussian variables with zero mean and known variance �2.
We have that d � m � N . The matrix W is known be-
cause it was formed to whiten and reduce a dataset that
was originally was of size m�N . We assume that all quan-
tities are real variables; no additional insight is gained by
considering the complex case.

We de�ne the following vectors and sub-matrices for fu-
ture reference:

A � [a1 � � � ad] = [Ak Ad�k ]

where

Ak � [a1 � � �ak] and Ad�k � [ak+1 � � �ad] ;
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Let us describe in words the meanings of the various no-
tations. S is composed of d rows of data; row sTi represents
the signal from the ith user. Since we are considering a
sequential identi�cation scheme, the submatrix Sk respre-
sents the previously identi�ed k signals. Without loss of
generality, we assume that the �rst k rows of S have been
found. The matrix Sd�k represents the currently unidenti-
�ed d�k signals from S. The matrix Ak is the submatrix of
A consisting of those columns associated with the k signals
Sk; the submatrix Ad�k represents the remaining columns.



We assume that we have previously estimated Sk cor-
rectly. We use this information to \remove" the contri-
butions of Sk from X and deate the problem to a lower
dimension. To perform this deation, we must estimate Ak

and the range of Ad�k . We describe this estimation process
in detail in section 2. In section 3, we describe the dea-
tion process and analyze the e�ects of estimation errors. In
section 4, we derive a simple validity test for the hypothesis
that the estimate ŝTk+1 of the next row of S is correct. We
then conclude the paper.

2 ESTIMATION OF Ak AND RANGE OF Ad�k

In this section, we describe and analyze the estimates re-
quired by our deation procedure. The deation procedure
uses an oblique projection which requires estimates of Ak

and the range of Ad�k, so we begin by describing how these
quantities are estimated. We then analyze sources of bias
in these estimates.
To estimate Ak, we use the pseudo-inverse of Sk:

Sk
y �

�
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T
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:

Then Ak is estimated simply as

Âk � XSk
y = Ak +Ad�kSd�kSk

y +WVSk
y
: (1)

The expected value of this estimate is

EfÂkg = Ak +Ad�kSd�kSk
y

so the estimate is biased by the unknown correlation be-
tween Sk and Sd�k.
Next, we form the quantity

X � ÂkSk = [Ak Ad�k ]
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where we note that the quantity

PSk � Sk
y
Sk

is a projection matrix and P?Sk is the orthogonal projection.
Then
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where we have used the fact that the elements of V are
i.i.d. zero-mean Gaussian random variables. The important
point is that all the terms in the quantity �2(N �k)WW

T

are known. Thus
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so that the eigendecomposition (with eigenvalues in decreas-
ing order on the diagonal) of
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can be used to estimate the range space of Ad�k .
De�ne the eigendecomposition as follows:
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so that Range(Ud�k) is an estimate of Range(Ad�k ). For
consistency with the notation of the papers [7, 8], we use
the notation Nk to denote an orthonormal basis spanning
Range(Ad�k), so that

Range(Ud�k) � Range(N̂k)
�= Range(Nk) � Range(Ad�k):

(2)

3 DEFLATION

In this section, we describe the deation procedure and an-
alyze the e�ects of errors in our estimates upon the deated
data. Using two approximations, we arrive at a simple equa-
tion describing the deated data. We will use an equation
from reference [9] to form an oblique projection operator E
which will be used to perform the deation.
We desire the range of E to be Range(Nk ), the range of

Ad�k; however we must use estimate Range(N̂k ) instead.
We desire the null space of E to be the range of Ak; we
must instead use the estimate Range(Âk). Plugging these
values into the equation from [9] yields
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After obliquely projecting the data with E it will reside
in a (d � k) dimensional subspace, so we will reduce the

dimension of the problem by multiplying by N̂k

T

. This
yields

N̂k

T

E = [I 0]

�
I N̂k

T

Âk
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so it will only be necessary to calculate the quantities in the
�rst row of the inverse matrix in equation 3. We can use a
formula for the inverse of a block matrix from [10]. To do
so requires the computation of the Schur complement �. In
our case,
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We now make two approximations. The �rst approxi-
mation is that the error terms in Âk are dominated by the
correlation between Sd�k and Sk so that we can neglect the
noise term in equation 1. This yields

Âk
�= Ak +Ad�kSd�kSk

y
:

The second approximation has been previously introduced
in equation 2 and merely states that Range(N̂k) is a good
approximation to Range(Ad�k ). Thus we get the approxi-
mations
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We now use these approximations in the product
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Multiplying this quantity by S yields
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Finally, we arrive at the product
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Thus, except for the error term (N̂k

T

Ad�kSd�kPSk), the

linear operator (N̂k

T

E) converts the problem X = AS +
WV into a lower-dimensional problem of similar form. This
lower-dimensional problem can now be input into the signal-
identifying algorithm for further processing. Note that the
error term is due to the unknown correlation between Sd�k
and Sk. We will see in the next section that even though
we do not know this correlation, we can still compensate
for its e�ects when testing the next estimated signal ŝk+1.

4 A SIMPLE VALIDITY TEST FOR ŝ
T

K+1

In this section, we derive a simple test for the hypothesis
that we have successfully estimated the next signal sTk+1.
We assume that we have input the reduced problem 4 into

an algorithm which returns two quantities: �T and ŝTk+1.

The quantity ŝTk+1 is an estimate of one of the rows (signals)
of Sd�k, where we have assumed without loss of generality
that row k+1 of S is found. The quantity �T is an estimate

of the �rst row of (N̂k

T

Ad�k)
�1

. (We remark that the al-
gorithms described in [7, 8] return exactly these quantities;
they are the motivating examples for this paper.)
We now form the hypothesis that ŝTk+1 = s
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Subtracting the decoded signal sTk+1 from this quantity

yields the residual vector rT :
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We have arrived at the �nal important point: we know
(or assume by hypothesis) the quantities sTk+1PSksk+1 and
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a row vector of zero-mean i.i.d. Gaussian random vari-
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can thus form the test statistic
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which under our hypothesis will be distributed as �2(N).
Thus, even though we do not know the correlation between
Sk and Sd�k, we can form a simple test statistic to deter-
mine whether the signal-extracting algorithm has converged
to a correct estimate of sTk+1.

5 DISCUSSION AND CONCLUSION

The deation approach and test statistic described in this
paper was used successfully in the algorithms described in
references [7, 8]. The combined algorithm was faster than
existing simultaneous-estimation algorithms while paying
only a modest penalty in BER for using its sequential
approach. The simulations performed in references [7, 8]
demonstrate that the test statistic was robust with respect
to modest violations of the assumptions used in this paper.
For example, in this paper we assumed that the previous k
signals Sk were estimated without error; in practice, how-
ever, the approach will still yield approximate results when
Ŝk contains some symbol errors. We also assumed that the
noise term in equation 1 was negligible with respect to the
correlation error term. Violation of this assumption in prac-
tice is not a problem since in that case the correction term
s
T

k+1PSksk+1 in equation 5 is small with respect to the total

residual power rT r. In conclusion, the deation approach
and test statistic described in this paper can be successfully
combined with a sequential-estimation algorithm to create
a fast and e�ective digital source separation algorithm.
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