A TEST STATISTIC FOR SEQUENTIAL IDENTIFICATION OF CO-CHANNEL
DIGITAL SIGNALS USING A DEFLATION APPROACH

Lars K. Hansen?

Guanghan Xu' *

'Department of Electrical and Computer Engineering,
University of Texas at Austin,
Austin, Texas 78712-1084, USA

ABSTRACT

When sequentially separating a linear combination of
co-channel digital signals, it is necessary at each step to
test the validity of the currently estimated signal prior to
proceeding to extract the next one. We describe a proce-
dure for use with sequential algorithms which uses a defla-
tion-based approach combined with a simple test statistic.
The deflation step removes the contributions of the cur-
rently identified signals. The simple test statistic takes into
account the error terms introduced into the data by the
deflation. The method has been successfully applied in an
existing sequential estimation algorithm.

1 INTRODUCTION AND PROBLEM
FORMULATION

The general source separation problem has been studied
for some time, see [1] for a good discussion and bibliogra-
phy. More recently, the problem has been specialized to
the case of digital signals, [2, 3, 4, 5, 6] for example. These
types of algorithms have applications to demodulation of
multiple co-channel digital signals which arise in spatial-
division-multiple-access and cellular telephony. All of these
algorithms simultaneously estimate all of the multiple co-
channel signals.

In this paper, we consider a problem motivated by an al-
gorithm which sequentially separates an instantaneous mix-
ture of digital signals. Suppose that we have an algorithm
which can estimate one signal from the mixture of digital
signals. (The algorithms in [7, 8] are the motivating ex-
amples for this paper.) As each signal is estimated, it is
“removed” from the instantaneous mixture and a new “de-
flated” problem of lower dimension is formed, and the pro-
cess is repeated. At any given stage, the estimated signal
may be faulty; in particular, the fault may be due to conver-
gence of the estimation algorithm to a non-global optima.
Therefore, it is necessary to test each estimate for validity.
This testing is complicated by the fact that correlations
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among the signals introduce an additional error term into

the deflated problem. In this paper, we describe a deflation

method and derive a simple validity test for each sequential

estimate which takes this signal correlation into account.
We consider the problem

X=AS+WV

where X is a d x N matrix of known data, A is a full-rank
d x d matrix, S is a deterministic full-rank d x N signal ma-
trix drawn from a common digital alphabet, W is a known
full-rank d x m matrix, and V is a m x N matrix of 1.i.d.
Gaussian variables with zero mean and known variance o°.
We have that d < m <« N. The matrix W is known be-
cause it was formed to whiten and reduce a dataset that
was originally was of size m x N. We assume that all quan-
tities are real variables; no additional insight is gained by
considering the complex case.

We define the following vectors and sub-matrices for fu-
ture reference:

A= [a---ag] =[AxAs ]
where
Ay =[ar - ag] and Ag_k =[ag41---aq],
s{ S
and S = T = [ Sdik :|

Sq

where

slT S£+1

S, = and Sk =
st Sq

Let us describe in words the meanings of the various no-
tations. S is composed of d rows of data; row s represents
the signal from the ith user. Since we are considering a
sequential identification scheme, the submatrix Sy respre-
sents the previously identified k signals. Without loss of
generality, we assume that the first & rows of S have been
found. The matrix Sq—g represents the currently unidenti-
fied d—k signals from S. The matrix Ay is the submatrix of
A consisting of those columns associated with the k signals
Sik; the submatrix Ag4_y represents the remaining columns.



We assume that we have previously estimated Sg cor-
rectly. We use this information to “remove” the contri-
butions of S; from X and deflate the problem to a lower
dimension. To perform this deflation, we must estimate Aj
and the range of A4_;. We describe this estimation process
in detail in section 2. In section 3, we describe the defla-
tion process and analyze the effects of estimation errors. In
section 4, we derive a simple validity test for the hypothesis
that the estimate é{H of the next row of S is correct. We
then conclude the paper.

2 ESTIMATION OF A; AND RANGE OF A,

In this section, we describe and analyze the estimates re-
quired by our deflation procedure. The deflation procedure
uses an oblique projection which requires estimates of Ay
and the range of Ag_g, so we begin by describing how these
quantities are estimated. We then analyze sources of bias
in these estimates.

To estimate Aj, we use the pseudo-inverse of Sg:

Skt = (skT(skskT)‘l).
Then Ay is estimated simply as
AL =XS,t = Ay + Ay ikSaiSkT+ WVS,T (1)
The expected value of this estimate is
E{AL} = A + Au_iSa—iSi!

so the estimate i1s biased by the unknown correlation be-
tween Si and Sq—k.
Next, we form the quantity

Sk
Sa—x
—AuSr — Ay_1Sa_1Si1S, — WVS,TS,
— AuySex[I-Ps, ]+ WV[I - Ps,]
= Ad—ksd—kpé_k +VVVP§'k

X —AiSy = [As Ad_k][ ]+WV

where we note that the quantity
Psk = SkTSk

is a projection matrix and Pé‘k is the orthogonal projection.

Then

N o T
€ {(x — AySy) (X — AySy) }
= Ad_de_szLk Sd—kTAd—kT
+o*(N —k)WW7T
where we have used the fact that the elements of V are
1.1.d. zero-mean Gaussian random variables. The important

point is that all the terms in the quantity o° (N —k)WW7T
are known. Thus

£ {(X — AiSi) (X - Aksk)T} — *(N = k) WWT
= Ad_de_kPé_k Sd—kTAd—kT7

so that the eigendecomposition (with eigenvalues in decreas-
ing order on the diagonal) of

(X — AxSi) (X — AxSi)" — (N =)WW'

can be used to estimate the range space of Agq_y.
Define the eigendecomposition as follows:

(X — AxSi) (X — AxSy)" — (N =) WWT

Saok Ul
] | ¥ g, [ 2

Then
Ui 1D Ul 2 Ag s Sd—kpé_k Sa_r Ag_i”,

so that Range(Uqg_s) is an estimate of Range(Aqg_x). For
consistency with the notation of the papers [7, 8], we use
the notation A% to denote an orthonormal basis spanning
Range(Aqg_r), so that

Range(Ugq_x) = Range(N}) (2)
= Range(N%) = Range(Aq—x).

3 DEFLATION

In this section, we describe the deflation procedure and an-
alyze the effects of errors in our estimates upon the deflated
data. Using two approximations, we arrive at a simple equa-
tion describing the deflated data. We will use an equation
from reference [9] to form an oblique projection operator E
which will be used to perform the deflation.

We desire the range of E to be Range(N ), the range of
Ai_i; however we must use estimate Range(./\7k) instead.
We desire the null space of E to be the range of Ag; we
must instead use the estimate Range(Ay). Plugging these
values into the equation from [9] yields

" T n -1 T
o I N Ay N
B= o] [ ATN. ATAq ] [ AT ]

After obliquely projecting the data with E it will reside
in a (d — k) dimensional subspace, so we will reduce the
dimension of the problem by multiplying by J\7kT. This
yields

N.E=T[10] [ I

NTAL 1T AT )
ATX, )

ATA, AT

so it will only be necessary to calculate the quantities in the
first row of the inverse matrix in equation 3. We can use a
formula for the inverse of a block matrix from [10]. To do

so requires the computation of the Schur complement A. In
our case,

A= A;?Ak — AgNkaTAk = Ang\}kAk
The (1,1) term of the block
is (I+ N AyA™ATAR). The (1,2) term of the block

L. ~ T oA .
matrix is (=& Ag A_l). Thus equation 3 becomes

matrix

N E=Ni" =N AyaT ATPE



We now make two approximations. The first approxi-
mation is that the error terms in Ak are dominated by the
correlation between Sy—_; and S so that we can neglect the
noise term in equation 1. This yields

A2 Ay + Ag_xSa_iSi'.

The second approximation has been previously introduced
in equation 2 and merely states that Range(Nk) is a good
approximation to Range(Ag_j). Thus we get the approxi-
mations

P;,kAd_k ~ o,

i ~ i
PNkAk ~ PNkAk7
and
~ Tpl
A = A PN‘kA'

We now use these approximations in the product
N EA
A T ORI
= N [[Ak Ag_i]— AxA 1A£Pj\'7k [Ax Ad_k]]

=] J\7kT [[Ak Ag_i] — Akﬁ_l[A 0]]
= N [(Ax — Ax) Au_i]

1

N [(—Ad—rSa—rSk") Aa_s]
= Ni Aas [(_Sd—kskt) I]

Multiplying this quantity by S yields

N. EAS

~ T Sk
&~ Ay p[—Sa xSk 1

Nk dk[ d—kk ]|:Sd—k:|

~ T ~ T
= (Ni Aur)Sa—r — (Nx Aa_iSi_iPs,).

Finally, we arrive at the product

N EX
— Ni E[AS +WV]
= (J\A/.kTAd_k)Sd_k =+ (NkTEW)V (4)

—(NkTAd—de—szk).

” T
Thus, except for the error term (Ni~ Aq—xSa—xPs, ), the

linear operator (J\7kTE) converts the problem X = AS +
WYV into alower-dimensional problem of similar form. This
lower-dimensional problem can now be input into the signal-
identifying algorithm for further processing. Note that the
error term is due to the unknown correlation between Sgq—_x
and Si. We will see in the next section that even though
we do not know this correlation, we can still compensate
for its effects when testing the next estimated signal 8x41.

4 A SIMPLE VALIDITY TEST FOR §7,

In this section, we derive a simple test for the hypothesis
that we have successfully estimated the next signal s£+1.
We assume that we have input the reduced problem 4 into

an algorithm which returns two quantities: a? and §£+1.

The quantity é{H is an estimate of one of the rows (signals)

of Sq_x, where we have assumed without loss of generality

that row k+1 of S is found. The quantity a7 is an estimate
-1

of the first row of (NkTAd_k) . (We remark that the al-
gorithms described in [7, 8] return exactly these quantities;
they are the motivating examples for this paper.)

We now form the hypothesis that é{H = s{H and that

N 1
a’ equals the first row of (NkTAd_k) . Under this hy-
pothesis we get

"N EX 25T, + ("N EW)V — s, Ps, .
Subtracting the decoded signal s{H from this quantity
yields the residual vector r’:

r" = —sL,,Ps, + ("N EW)V.
The expected value of the sum of the squared residuals is
E(r'r} = iy Ps skt
TN TEW)E(VVT ) (aT N TEW)

We have arrived at the final important point: we know

(or assume by hypothesis) the quantities sg_l_lPskskH and

~ T . ~” T .

(aTNk EW). Note that the quantity (aTNk EW)V is

a row vector of zero-mean 1i.d. Gaussian ranqun vari-

. . a” T ~ T

ables with variance 02(aTNk EVV)(aTNk EW) . We

can thus form the test statistic

T T
r'r—s; Ps,sp

~ T ~ T T
02(aTNk EVV)(aTNk EW)

(5)

which under our hypothesis will be distributed as x*(N).
Thus, even though we do not know the correlation between
Sy and Sg_x, we can form a simple test statistic to deter-
mine whether the signal-extracting algorithm has converged
to a correct estimate of s£+1.

5 DISCUSSION AND CONCLUSION

The deflation approach and test statistic described in this
paper was used successfully in the algorithms described in
references [7, 8]. The combined algorithm was faster than
existing simultaneous-estimation algorithms while paying
only a modest penalty in BER for using its sequential
approach. The simulations performed in references [7, 8]
demonstrate that the test statistic was robust with respect
to modest violations of the assumptions used in this paper.
For example, in this paper we assumed that the previous k
signals Sy were estimated without error; in practice, how-
ever, the approach will still yield approximate results when
Sy contains some symbol errors. We also assumed that the
noise term in equation 1 was negligible with respect to the
correlation error term. Violation of this assumption in prac-
tice is not a problem since in that case the correction term
s{H Ps, sx41 in equation 5 is small with respect to the total
residual power r7r. In conclusion, the deflation approach
and test statistic described in this paper can be successfully
combined with a sequential-estimation algorithm to create
a fast and effective digital source separation algorithm.
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