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ABSTRACT

This paper addresses the problem of the blind source sepa-
ration which consists of recovering a set of signals of which
only instantaneous linear mixtures are observed. A blind
source separation approach exploiting the di�erence in the
time-frequency (t-f) signatures of the sources is considered.
The approach is based on the diagonalization of a combined
set of `spatial time-frequency distributions'. Asymptotic
performance analysis of the proposed method is performed.
Numerical simulations are provided to demonstrate the ef-
fectiveness of our approach and to validate the theoretical
expression of the asymptotic performance.

1. INTRODUCTION

Blind source separation consists of recovering a set of signals
of which only instantaneous linear mixtures are observed.
The �rst solution to this problem was based on the cancel-
lation of higher order moments assuming non-Gaussian and
i.i.d. source signals [1]. Since then, other criteria based on
minimizations of cost functions, such as the sum of square
fourth order cumulants [2, 3], contrast functions [2] or like-
lihood function [4], have been used by several researchers.
In the case of non i.i.d. source signals and even Gaussian
sources, solutions based on second order statistics are pos-
sible [5, 6]. Matsuaka et al. have shown that the problem
of the separation of nonstationary signals can be solved us-
ing second order decorrelation only [7]. They implicitly use
the nonstationarity of the signal via a neural net approach.
Herein, we propose to take advantage explicitly of the non-
stationarity property of the signals to be separated. This
is done by resorting to the powerful tool of time frequency
signal representations.
In this paper, we develop an approach based on a joint

diagonalization of a combined set of spatial time-frequency
distributions. This approach exploits the di�erence between
the t-f signatures of the sources. In contrast to existing
methods, the proposed approach allows the separation of
Gaussian sources with identical spectra shape but with dif-
ferent time-frequency localization properties. Moreover, the
e�ects of spreading the noise power while localizing the
source energy in the time-frequency domain amounts to in-
crease the robustness of the proposed approach with respect
to noise.
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2. PROBLEM FORMULATION

Consider m sensors receiving an instantaneous linear mix-
ture of signals emitted from n sources. The m � 1 vector
x(t) denotes the output of the sensors at time instant t

which may be corrupted by an additive noise n(t). Hence,
the linear data model is given by:

x(t) = As(t) + n(t); (1)

where them�nmatrix A is called the `mixing matrix'. The
n source signals are collected in a n� 1 vector denoted s(t)
which is referred to as the source signal vector. The sources
are assumed to have di�erent structures and localization
properties in the time frequency domain. The mixing ma-
trix A is full column rank but is otherwise unknown. In
contrast with traditional parametric methods, no speci�c
structure of the mixture matrix is assumed.

The problem of blind source separation has two inherent
ambiguities. First, it is not possible to know the original
labeling of the sources, hence any permutation of the esti-
mated sources is also a satisfactory solution. The second
ambiguity is that it is inherently impossible to uniquely
identify the source signals. We take advantage of the sec-
ond indeterminacy by treating the source signals as if they
have unit power. This normalization still leaves undeter-
mined the ordering and the phases of the columns of A.
Hence, the blind source separation is a technique for the
identi�cation of the mixing matrix and/or the recovering
of the source signals up to a �xed permutation and some
complex factors.

3. SPATIAL TIME-FREQUENCY

DISTRIBUTIONS

The discrete-time form of the Cohen's class of time-
frequency distributions (TFD), for signal x(t), is given by
[8]

Dxx(t; f) =

1X
l;m=�1

�(m; l)x(t+m+ l)x�(t+m� l)e
�j4�fl

(2)
where t and f represent the time index and the frequency
index, respectively. The kernel �(m; l) characterizes the
distribution and is a function of both the time and lag vari-
ables. The cross-TFD of two signals x1(t) and x2(t) is de-



�ned by

Dx1x2 (t; f) =

1X
l;m=�1

�(m; l)x1(t+m+l)x�2(t+m�l)e�j4�fl

(3)
Expressions (2) and (3) are now used to de�ne the follow-

ing data spatial time-frequency distribution (STFD) matrix,

Dxx(t; f) =

1X
l;m=�1

�(m; l)x(t+m+ l)x�(t+m� l)e�j4�fl

(4)
where [Dxx(t; f)]ij = Dxixj (t; f); for i; j = 1; � � � ; n.
Under the linear data model of equation (1) and assuming

noise-free environment, the STFD matrix takes the follow-
ing simple structure:

Dxx(t; f) = ADss(t; f)A
H (5)

where Dss(t; f) is the signal TFD matrix whose entries are
the auto- and cross-TFDs of the sources. We note that
Dxx(t; f) is of dimension m � m, whereas Dss(t; f) is of
n � n dimension. For narrowband array signal processing
applications, matrix A holds the spatial information and
maps the auto- and cross-TFDs of the sources into auto-
and cross-TFDs of the data.
Since the o�-diagonal elements of Dss(t; f) are cross-

terms, then this matrix is diagonal for each time-frequency
(t-f) point which corresponds to a true power concentra-
tion, i.e. signal auto-term. In the sequel, we consider the t-f
points which satisfy this property. In practice, to simplify
the selection of auto-terms, we apply a smoothing kernel
�(m; l) that signi�cantly decreases the contribution of the
cross-terms in the t-f plane. This kernel can be a member
of the reduced interference distribution (RID) introduced in
[9] or signal-dependent which matches the underlying signal
characteristics [10].

4. PROPOSED ALGORITHM

Let W denotes a m� n matrix, such that (WA)(WA)H =
UUH = I, i.e. WA is am�m unitary matrix (this matrix is
referred to as a whitening matrix, since it whitens the signal
part of the observations). Pre- and post-multiplying the
TFD-matrices Dxx(t; f) byW, we then de�ne the whitened
TFD-matrices as:

D
xx
(t; f) =WDxx(t; f)W

H
(6)

From the de�nition of W and Eq.(5), we may expressed
D

xx
(t; f) as

D
xx
(t; f) =UDss(t; f)U

H
(7)

Since the matrix U is unitary and Dss(t; f) is diagonal,
expression (7) shows that any whitened data STFD-matrix
is diagonal in the basis of the columns of the matrix U

(the eigenvalues of D
xx
(t; f) being the diagonal entries of

Dss(t; f)).
If, for the (ta; fa) point, the diagonal elements of

Dss(ta; fa) are all distinct, the missing unitary matrix U
may be `uniquely' (i.e. up to permutation and phase

shifts) retrieved by computing the eigendecomposition of
Dzz(ta; fa). However, when the t-f signatures of the di�er-
ent signals are not highly overlapping or frequently inter-
secting, which is likely to be the case, the selected (ta; fa)
point often corresponds to a single signal auto-term, render-
ing matrix Dss(ta; fa) de�cient. That is, only one diagonal
element of Dss(ta; fa) is di�erent from zero. It follows that
the determination of the matrix U from the eigendecompo-
sition of a single whitened data STFD-matrix is no longer
`unique' in the sense de�ned above. The situation is more
favorable when considering simultaneous diagonalization of
a combined set fDzz(ti; fi)ji = 1; � � � ; pg of p STFD matri-
ces. This amounts to incorporating several time-frequency
points in the source separation problem. It is noteworthy
that two source signals with identical t-f signatures can not
be separated even with the inclusion of all information in
the t-f plane.

Joint diagonalization: The joint diagonalization [6] can
be explained by �rst noting that the problem of the diago-
nalization of a single n� n normal matrix M is equivalent
to the minimization of the criterion [11]

C(M;V)
def
= �

X
i

jv
�
iMvij

2 (8)

over the set of unitary matrices V = [v1; � � � ;vn]. Hence,
the joint diagonalization of a set fMkjk = 1::Kg of K ar-
bitrary n�n matrices is de�ned as the minimization of the
following JD criterion:

C(V)
def
= �

X
k

C(Mk;V) = �

X
ki

jv
�
iMkvij

2 (9)

under the same unitary constraint. An e�cient joint ap-
proximate diagonalization algorithm exists in [6] and it is
a generalization of the Jacobi technique [11] for the exact
diagonalization of a single normal matrix.

Identi�cation Procedure: Equations (5-9) constitute
the blind source separation approach based on TFD which
is summarized by the following steps

� Determine the whitening matrix Ŵ from the eigende-
composition of an estimate of the covariance matrix of
the data (see [6] for more details).

� Determine the unitary matrix Û by minimizing the
joint approximate diagonalization criterion for a spe-
ci�c set of whitened TFD matrices fD

xx
(ti; fi)ji =

1; � � � ; pg,

� Obtain an estimate of the mixture matrix Â as Â =
Ŵ#Û, where the superscript # denotes the pseudo-
inverse, and an estimate of the source signals ŝ(t) as

ŝ(t) = ÛHWx(t).

5. ASYMPTOTIC PERFORMANCE

The performance is characterized in terms of signal re-
jection. After identi�cation of the matrix A, the esti-
mated source signals may be obtained as ŝ(t) = Â#x(t) =

Â#As(t) + Â#n(t).



The matrix P̂ de�ned by P̂ = Â#A should be close to
some matrix P with only one zero phase term in each row
and each column (phase and permutation indeterminacies).

For convenience, we assume that P̂ is close to a diagonal
rather than to some other permutation matrix. The p-th
estimated source signal is

ŝp(t) =

nX
q=1

P̂pqsq(t) + (A#
n(t))p (10)

The power of the q-th source signal residual (interference)

in the p-th estimated source signal is: Ipq = EjP̂pqj
2 (since

the sources have unit power, this quantity is nothing but the
interference to signal ratio (ISR) for the q and p-th source).
As a global measure of performance, we use the overall re-
jection level de�ned as the sum of all the interferences

Iperf
def
=
X
q 6=p

EjP̂pqj
2 =

X
q 6=p

Ipq (11)

In the case of Gaussian noise and deterministic source sig-
nals, we have derived closed form expressions of the rejec-
tion index at the limit of large snapshots. Details of the
calculation are presented in [12].

Ipq = I
0
pq + �

2
I
1
pq + �

4
I
2
pq (12)

where the coe�cients of the expansion are

I0pq =
1

4

"
�2pqjrT pqj

2 �

KX
k=1

�pq�pqk

�
rT pqDsqsp(tk; fk)+

rT qpDspsq(tk; fk)
�
+

KX
k;l=1

�pqk�pqlDspsq(tk; fk)Dsqsp(tl; fl)

#

I1pq =
1

4

"
�2pq

T
(rT ppJqq + rT qqJpp)�

KX
k=1

�pq�pqk

�
rT pqJqp

+rT qpJpq
2

T
(Dspsp(tk; fk)Jqq + Dsqsq(tk; fk)Jpp)

i
+

KX
k;l=1

�pqk

�pql(Dspsq(tk; fk)Jqp +Dsqsp(tl; fl)Jpq + F
k;l
spspJqq + F

k;l
sqsqJpp)

�
I2pq =

1

4

"
1

T

"
�2pq(JqqJpp +

jJpqj
2

m� n
)� 2

KX
k=1

�pq�pqkJqqJpp

#

+

KX
k;l=1

�pqk�pql(jJpqj
2 + �klJppJqq)

#

with

�pq = 1 +
jdpj2 � jdqj2

jdp � dqj2

dr = [Dsrsr(t1; f1); : : : ;Dsrsr (tK; fK)]T

�pqk =
D�
spsp

(tk; fk)�D�
sqsq

(tk; fk)

jdp � dqj2

rT pq =
1

T

TX
t=1

sp(t)s
�
q(t)

Jpq = (AH
A)�1pq

F
k;l
spsp =

+1X
v0;v;m=�1

�(m; v)�(m� v � v0 + tk � tl; v
0)

sp(tk +m+ v)s�p(tk +m� v � 2v0)e�j4�fkve�j4�flv
0

�kl =

+1X
v;m=�1

�(m;v)��(m+ (tk � tl); v)e
�j4�(fk�fl)v

For high signal to noise ratio, the expansion (12) is domi-
nated by the �rst term I

0
pq. Below, some comments on this

term are given:

� If the sources p and q have identical t-f signatures over
the chosen t-f points (i.e. dp = dq ), the corresponding
ISR Ipq ! 1.

� As the correlation function rT pq of the sources p and
q and the cross-terms Dspsq(tk; fk) vanish, the corre-
sponding ISR given by Ipq also vanishes, yielding a
perfect separation.

� I
0
pq is independent of the mixing matrix. In the array

processing context, it means that performance in terms
of interference rejection are una�ected by the array ge-
ometry. The performance depends only on the sample
size and the t-f signatures of the sources.

6. PERFORMANCE EVALUATION

Numerical experiments: we consider a uniform linear
array of three sensors having half wavelength spacing and
receiving signals from two sources in the presence of white
Gaussian noise. The sources arrive from di�erent direc-
tions �1 = 0 and �2 = 20 degrees. The source signals
are generated by �ltering a complex circular white Gaus-
sian processes by an AR model of order one with coe�cient
a1 = 0:85 exp(j2�f1(t)) and a2 = 0:85 exp(j2�f2(t)), where
we have:

f1(t) =

(
0:0625 for t = 1 : 400
0:1250 for t = 401 : 450
0:3750 for t = 451 : 850

f2(t) =

(
0:3750 for t = 1 : 400

0:1250 + �f for t = 401 : 450
0:0625 for t = 451 : 850

The signal to noise ratio (SNR) is set at 5 dB. The kernel
used for the computation of the TFDs is the Choi-Williams
kernel [8] , which provides a good reduction of the cross-
terms. Eight TFD matrices are considered. The corre-
sponding t-f points are those of the highest power in the
t-f domain. The mean rejection level is evaluated over 500
Monte-Carlo runs.
Table 1 shows the mean rejection level in dB versus the

`spectral shift' �f both for SOBI algorithm [6] and the new
algorithm. Note that for �f = 0, the two Gaussian source
signals have identical spectra shape. In this case, while SOBI
fails1 in separating the two sources, the proposed algorithm
succeed.

1We admit that a source separation algorithm fails when the

mean rejection level is greater than �10 dB.



Spectral shift (�f) Mean Rejection level in dB
SOBI TFS

0.000 -8.86 -12.22
0.002 -10.01 -12.21

0.010 -10.18 -12.34

0.050 -11.09 -12.53
0.200 -12.92 -12.54

Table 1. Performance of SOBI and TFS algorithms vs �f
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Figure 1. Performance validation vs �2.

Validation of the asymptotic performance: Herein,
the evaluation of the domain of validity of the �rst-order
performance approximation (12) is considered. The previ-
ous settings are used with the exception of the source signals
which are deterministic sinusoids at frequencies f1 = 0:4375
and f2 = 0:0625. The TFDs are computed using win-
dowed Wigner distribution. The chosen window width is
M = 2L + 1, with L = 32. The identi�cation is performed
using T

M
STFD matrices spaced in time by M samples (T

being the sample size). The overall rejection level is evalu-
ated over 500 independent runs.
In Fig.1, the rejection level Iperf is plotted in dB as a

function of the noise power �2 (also expressed in dB). In
Fig.2, the rejection level Iperf is plotted in dB as against
sample size. Both �gures 1 and 2 show that the approxima-
tion is better at high SNR and for large sample size. This
means that the asymptotic conditions are reached faster in
this range of parameters.

7. CONCLUSION

In this paper, the problem of blind separation of linear spa-
tial mixture of non-stationary source signal based on time
frequency distributions has been investigated. A solution
based on the diagonalization of a combined set of spatial
time frequency distribution matrices has been proposed. A
closed form expression for the performance criterion of the
method has been developed. Numerical simulations have
been provided to support the theoretical claims.
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Figure 2. Performance validation vs samples size (T).
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