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ABSTRACT

This paper addresses the issue of employing space-time
adaptive processing (STAP) prior to doppler filtering
in radar systems. When STAP beamformer process-
ing is applied to spatial/temporal samples that include
successive radar pulses, the adaptive weights can cause
modulation (spreading) of the desired target doppler.
In this paper, a linearly constrained adaptive beam-
former is proposed that ensures pre-doppler adaptive
processing will not degrade desired signal coherence.
A formulation of the processor is presented and its
properties described. This formulation is first given
for the case of slow-time STAP and is then extended to
include processors which use both fast and slow-time
samples. Examples showing the application of the pro-
posed structure to recorded data are used to illustrate
its performance. Comparisons are made with adaptive
systems that do not employ constraints to illustrate
the advantages of the proposed system. An extension
to the full STAP system which employ time taps in
both range and pulse number is described.

1. INTRODUCTION

The data recorded at the antenna array element out-
puts (after demodulation) during one coherent dwell in
a radar system can be represented by a data cube con-
taining NI = KNM samples. In this representation,
K is the number of antenna receiving elements, M is
the number of radar pulses transmitted during the co-
herent dwell, and N represents the number of range
samples recorded during each pulse. In conventional
(non-adaptive) radar processing, a total of K̃ ≥ K
output beams are formed by procedes by applying K̃
different steering vectors, V (θk), to the element out-
puts. Target Doppler information is obtained by per-
forming a M̃ -point FFT operation across the M pules.
Thus, the output (processed) radar data cube containts
NO = K̃NM̃ samples.

In adaptive spatial-only processing, K-dimensional
adaptive weights W (θk) are used in place of the fixed

steering vectors V (θk) to form the output beams. The
data covariance matrix employed in computing the
adaptive weights has dimension K. Space-Time Adap-
tive Processing (STAP), utilizes additional weights
which are distributed in either the range time dimen-
sion (fast time), the radar pulse dimension (slow time),
or both. Figure 1 illustrates the three possible STAP
implementations with fast-time STAP proceding in the
horizontal direction and slow-time adaptation down-
ward from the input data cube. Full STAP, with sam-
ples in both time dimensions, is illustrated by the grey
diagonal line in this figure. Note that an FFT opera-
tion is also required as part of this processing.
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Figure 1. Fast- and slow-time STAP processing
implementations.

Jim Ward [1] has provided an excellent description
of STAP processing methodolgies, including procedures
for computing the required covariance matrices. His
work includes a discussion stating that application of
adaptive processing prior to the doppler FFT opera-
tion results in modulation of the desired target signal
(see [1], page 105). This modulation has been termed
Doppler spreading and can lead to a performance de-
gredation of the slow-time STAP system. The pur-
pose of the present paper is to illustrate that linear
constraints can be employed with slow-time STAP to



     

ensure that Doppler spreading does not occur. In a
previous publication, [2], the author described a proce-
dure for using multiple linear constraints with fast-time
STAP to ensure that the temporal properties of the de-
sired target waveform are preserved.

2. MATHEMATICAL FRAMEWORK

The snapshot vector observed at the antenna element
outputs during the mth pulse and at the nth range sam-
ple is denoted by Xm(n). A total of M pulses are col-
lected during each coherent radar dwell. For the case of
slow-time STAP, the total snapshot vector which serves
as input to the adaptive processor is Xl(n) consisting
of L ≤M successive pulse samples,

X†l (n) =
[
X†l (n)X†l−1(n) · · ·X†l−L+1(n)

]
. (1)

This vector has KL total samples and the correspond-
ing output sample for beam direction θk and the lth

radar pulse, yl(n, θk), is computed as the inner prod-
uct of the weight vector Wl(θk) and the data vector
Xl(n),

yl(n, θk) = W†
l (θk)Xl(n) . (2)

Weight vectors covering a complete set of steering
angles,θk = [θ1, θ2, · · ·], are employed in the radar pro-
cessor to obtain signal estimates over the desired angu-
lar region. Figure 2 illustrates an example of the slow-
time STAP processor for the case of data collected un-
der the Mountaintop experimental radar program [3].
In these data, the radar dwell consisted of M = 16
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Figure 2. Slow-time STAP processing example.

pulses and the array had K = 14 elements. The
STAP is applied across L = 3 successive input pulses
and thus the number of output (processed) pulses is
M −L+1 = 14. Additional relevant results for the use
of fast-time STAP on Mountaintop data have been pre-
sented by in [2] and by Seliktar, et al [4]. The example
shown in Fig. 2 illustrates the processing to produce
outputs for a single range bin and for steering angles
θ1, θ2, · · ·.

3. OPTIMAL WEIGHT COMPUTATION

The K−dimensional array steering vector V (θs) repre-
sents the set of phase delays for a signal incident from
direction θs. Non-STAP optimal element weights for
this steering direction are given by,

Wopt =
R−1
XXV (θs)

V †(θs)R
−1
XXV (θs)

, (3)

where RXX is the element data covariance matrix,

RXX = E
[
Xm(n)X†m(n)

]
, (4)

and the scalar normalization in the denominator en-
sures unity gain of the processor in direction θs. It can
readily be shown [5] that (3) is identical to the weight
vector which minimizes the beamformed output power,
E
[
|W †Xm(n)|2

]
, under a single linear constraint,

V †(θs)W = 1 . (5)

When adjacent time and/or pulse samples are added
to the processing system, i.e., when STAP is employed,
additional weights are required in the weight vector.
The number of optimal weights in the vector Wopt is
equal to the number of elements in the array. With
slow-time STAP, the data snapshot is that given by (1)
which contains KL elements. The appropriate weight
vector W is then given by,

W =


W0

W1

...
WL−1

 , (6)

where Wm is the K−dimensional weights which are
applied to the mth pulse, Xl−m, in (1).

The obvious extension of the single constraint weight
solution in (3) for the extended weights W is to replace
the K−dimensional steering vector V (θs) with an ex-
tended KL−dimensional vector V(θs) that consists of
sets of zero vectors of length K and a single non-zero
vector equal to V (θs). This embedded non-zero steer-
ing vector is generally placed near the midpoint of the
extended vector, corresponding to one-half of the pulse
time-delay span of the STAP weights. The result of this
widely used approach is to maintain a single-constraint
solution through use of an “extended” steering vector
that contains a large number of zeros.

The KL−dimensional optimal weights Wopt are
then determined in a manner similar to that shown
in Eq. (3) - (5) but with the covariance matrix RXX

corresponding to the expanded dimension of the STAP
data vector Xl(n). This approach, however, may re-
sult in distortion of the desired signal Doppler spec-
trum, even when this signal perfectly matches the



      

K−dimensional steering vector V (θs). To illustrate,
consider a sinusoidal, single-frequency Doppler signal
in which the temporal frequency is ω0 and the Doppler
frequency is ωd. The vector signal component S(n) of
the lth K−dimensional pulse is then,

S(n) = ejωdlejω0nV (θs) , (7)

and the signal output ys(n) component corresponding
to combining the first L pulses using (6) is,

ys(n) =

L−1∑
l=0

ejωdlW †l V (θs) ,

=
L−1∑
l=0

αle
jωdl , (8)

The αl coefficients effectively act as a set of FIR fil-
ter coefficients that will modify the magnitude and
phase of the Doppler component at frequency ωd. The
problem is further complicated by the fact that the
Wl components depend upon the data covariance ma-
trix. Variations in the estimation of this matrix within
the data cube can readily occur due to the presence
of strong clutter components. In addition, the desired
signal may consist of a Doppler spectrum rather than
a single Doppler frequency component. These factors
combine to produce spreading and distortion of the de-
sired signal Doppler spectrum in many practical appli-
cations. For this reason, Doppler processing is often
applied prior to adaptive processing [1].

The problems cited above with respect to desired
signal Doppler distortion can be avoided with the use of
multiple constraints [5]. The approach suggested here
is to constrain each of the Wl components in W,

W †l V (θs) = δ(l0 − l) . (9)

These L constraints ensure that only one of the αl
terms in (8), that corresponding to l = l0, is non zero.
With this set of constraints, the FIR linear filter ap-
plied to the Doppler spectrum is all-pass. If a specific
filtering function is desired, the L constraints can be of
the more general form,

W †l V (θs) = βl . (10)

The βl values are then selected to provide a desired
Doppler frequency filtering for the desired signal such
as in the Moving Target Indicator (MTI) case where,

L−1∑
l=0

βl = 0 . (11)

In effect, the zero DC response of this operator blocks
any signals that are incident on the array from the

steering direction θs and which have zero Doppler
frequency. For the airborne radar environment, [1],
this corresponds to steering in the broadside direction
where the clutter Doppler frequency is zero. For the
three-pulse STAP system, one set of such coefficients
are,

[β0 β1 β2] = [−0.5 1.0 − 0.5] , (12)

Nulls at other frequencies, corresponding to airborne
mainbeam directions other than broadside, are readily
generated in a similar manner.

A general formulation of the multiple-constraint pro-
cessor which based on the Generalized Sidelobe Can-
celler is given in Ref. [5]. The multiply-constrained
optimal weight vector Wopt is,

C†W = f , (13)

Wopt = RXX
−1C

[
C†RXX

−1C
]
f . (14)

The first of these equations defines a set of L con-
straints comparable to Eq. (9). The constraint matrix
C is zero except for L K-dimensional steering vectors
V(θs) along the diagonal. The constraint vector f is
a column vector of zeros except for a single 1 in po-
sition l0. Equation (14) specifies the set of optimal
weights, i.e. those which minimize the output power,
E
[
|ys(n)|2

]
, subject to the constraints in (13).

4. EXTENSION TO FULL STAP CASE

The previous section has provided a description of the
slow-time STAP processor which preserves the Doppler
spectrum of any signal that arrives from the desired
steer direction θs. Reference [2] presents the compara-
ble approach for the fast-time STAP processor in which
weights are applied to succesive range samples. In
this case, adaptation is generally applied after Doppler
processing. With proper choice of linear constraints,
however, fast-time STAP can also be used prior to
Doppler processing. If L2 successive range samples are
employed, the extended KL2-dimensional data vector
comparable to that in Eq. (3) is Xk(n) given by,

X†l (n) =
[
X†l (n), · · · X†l (n− L2 + 1)

]
, (15)

and the subscript l denotes the fact that adaptation
takes place on the lth radar pulse.

In full-STAP adaptation, weights are applied to both
successive time samples in range and to successive radar
pulses. Assuming that this process extends over L1

radar pulses and L2 range samples implies that the
weight vector consists of KL1L2 elements. The ex-
tended data vector can then be expressed using either
(1) or (15). For example, using (1), the extended vec-
tor X̃l(n) contains L2 sub vectors Xl(n − k), each of
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Figure 3. Range-Doppler plot obtained with
single-constraint processing.

dimension L1 and spanning L1 successive radar pulses,

X̃†l =
[
X†l (n), · · · ,X†l (n− L2 + 1)

]
. (16)

The weights W̃ applied to these data must then be
constrained to ensure that each sub-component has the
desired properties by using L1 constraints for each of
the X†l (n− k) vectors. Application of an additional L2

constraints across the fast-time dimension completes
the process.

5. NUMERICAL EXAMPLES

In order to illustrate the effect of multiple constraints
on Doppler response, field-recorded Mountaintop data
[3] were employed. The array contains 14 elements and
16 radar pulses were collected in the CPI. A total of
three consecutive pulses were used in the slow-time
STAP processor. The three constraints in f were set
to values of [010]† to ensure an all-pass, non-distorting
Doppler response. A large target signal located at ar-
rival angle 10o, Doppler frequency 100 Hz, and cen-
tered at a range of 148Km was added to the data to
illustrate the advantages of the multiple-constraint ap-
proach. The signal extended over 20 range samples.
Figures 3 and 4 illustrate results obtained from file T38-
03v1 (CPI 6).

As shown by the smearing near the target at 148
Km. in Fig. 3, significant sidelobes were observed for
the single-constraint case in the recorded-data environ-
ment. These sidelobes both mask the data structure
over the range extent of the signal and distort the main-
lobe Doppler response. It is therefore concluded that
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Figure 4. Range-Doppler plot obtained with
multiple-constraint processing.

with appropriate selection of the constraints, adapta-
tion can be applied to pre-Doppler data without in-
ducing modification of the desired signal Doppler spec-
trum. Adaptation with a single constraint, however,
may produce masking and distortion in regions close to
the desired signal. Finally, it should be noted that the
use of additional constraints will necessarily increase
the beamformed output power over that observed with
a single constraint. Evidence suggests, however, that
this “price paid” for the additional protection of signal
preservation does not significantly degrade the output.
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