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ABSTRACT

A closed-form multi-dimensional multi-invariance general-
ization of the ESPRIT algorithm is introduced to exploit the
entire invariance structure underlying a (possibly) multi-
parametric data model, thereby greatly improving estima-
tion performance. The multiple-invariance data structure
that this proposed method can handle includes: (1) multi-
ple occurrence of one size of invariance along one or multi-
ple parametric dimensions, (2) multiple sizes of invariances
along one or multiple parametric dimensions, and (3) invari-
ances that cross over two or more parametric dimensions.
The basic (uni-dimensional uni-invariance) ESPRIT algo-
rithm is applied in parallel to each multiple pair of matrix-
pencils characterizing the multiple invariance relationships
in the data model, producing multiple sets of cyclically
ambiguous estimates over the multi-dimensional parameter
space. A weighted least-squares hyper-plane is then �tted
to these set of estimates to yield very accurate and unam-
biguous estimates of the signal parameters.

1. INTRODUCTION

ESPRIT [1] (Estimation of Signal Parameters via Rota-
tional Invariance Techniques) represents a highly popu-
lar eigenstructure (subspace) method. ESPRIT has found
wide-ranging applications, from radar, to sonar, wireless
cellular communications, global positioning systems (GPS),
microwave imaging and even image analysis. However, ES-
PRIT, as originally formulated, exploits only one invariance
per parametric dimension. Any multiple-invariance struc-
ture | including multiple occurrences of one size of in-
variance along the same parametric dimension, or multiple
sizes of invariances along the same parametric dimension, or
invariances that cross over two or more parametric dimen-
sions, or any combination of these above cases | embedded
in the data set would be ignored by ESPRIT in its original
formulation. Such multi-dimensional multi-invariance data
structure appears in many practical applications. Over-
looking such data's full invariance structure compromises
estimation performance.
For example, consider the two-dimensional direction-

�nding problem with a Lx � Ly rectangular array uni-
formly spaced at �. This is a two-dimensional problem
estimating the direction-cosines along the x-axis and the y-
axis, fuk = sin �k cos �k; vk = sin �k sin �k; k = 1; : : : ;Kg
(where �k is the elevation angle measured from the z-axis,
�k is the azimuth angle measured from the x-axis). Along
each parametric dimension, there exist multiple sizes of spa-
tial invariances, ranging from �(d), 2�(d), and so on all the
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way to (L� 1)�(d), where d = x or d = y. Moreover, each
of these sizes of spatial invariances may be regarded as oc-
curring multiple times. Moreover, there also exist various
sizes of "diagonally oriented" spatial invariances at various
angles with the x-y coordinates.

2. REVIEW OF RELEVANT LITERATURE

Open-form iterative search methods have been proposed to
extend the general uni-invariance ESPRIT algorithm to the
multi-parametric multi-invariance case, e.g. Roy, Otter-
sten, Swindlehurst & Kailath [2] for the uni-dimensional
multiple-invariance case, Swindlehurst, Roy & Kailath [3]
and Swindlehurst & Kailath [4,5] for the multi-dimensional
multiple-invariance case. These iterative searches require
complete knowledge (and thus computer storage) of the
array manifold function's dependency on signal parame-
ters. However, the foregoing methods do not fully ex-
ploit ESPRIT's main advantages of closed-form solution
and freedom from having to store in computer memory
detailed information of the array manifold function. In-
stead in the present algorithm, the basic (uni-dimensional
uni-invariance) ESPRIT algorithm is applied in parallel to
each multiple pair of matrix-pencils characterizing the mul-
tiple invariance relationships in the data model, produc-
ing multiple sets of cyclically ambiguous estimates over
the multi-dimensional parameter space. A weighted least-
squares hyper-plane is then �tted to these set of estimates
to yield very accurate and unambiguous estimates of the
signal parameters.

3. MATHEMATICAL DATA MODEL

Whilst the following presentation is developed from the
perspective of sensor-array direction �nding, the present
algorithm is applicable to any multi-dimensional multi-
invariance parameter estimation problem. The sampled
data consist of a time sequence of L � 1 measurements
fz(tn); ; n = 1; : : : ;Ng. At each time instance tn:

z(tn)
def
= a(u(1)k ; : : : ; u
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k )
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Pk�k(tn)ej(2�ftn+'k)| {z }
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where a(u
(1)

k ; : : : ; u
(D)

k ) represents the L� 1 array manifold
in response to the k-th excitation source, which is parame-

terized by its D Cartesian direction-cosines fu(1)k ; : : : ; u
(D)

k g,
where D = 1; 2; or 3. 1 Also, Pk denotes the k-th excita-
tion source's power, �k(t) is a zero-mean unit-variance com-
plex random process, f refers to the sources' excitation fre-
quency, 'k denotes the k-th signal's uniformly-distributed
random carrier phase, and n(tn) is an L�1 noise vector for
additive zero-mean white noise with variance �2n.

1A temporal invariance also exists if the incident signals are
monochromatic pure tones.



For example, an Lx � Ly-element rectangular array of
identical omni-directional sensors uniformly spaced at �x

and �y would have the array manifold:
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where uk = sin �k cos �k represents the k-th source's di-
rection cosine relative to the x-axis, and vk = sin �k sin �k
represents the k-th source's direction cosine relative to the
y-axis, 0 � �k < 2� denotes the k-th source's azimuth an-
gle, and 0 � �k < �=2 denotes the k-th source's elevation
angle.
Back to the general case, if N > K snapshots are taken,

then the entire data set Z is L � N in size and may be
expressed as:
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4. REVIEW OF UNI-DIMENSIONAL

UNI-INVARIANCE ESPRIT

Assuming that the array manifold is unambiguous (i.e.,
a one-to-one mapping exists between uk and a(uk), or
equivalently a(ui) 6= a(uk) for all i 6= k), Z has rank
equal to K under noiseless or asymptotic scenarios. That
is, the column-space of Z may be decomposed into a K-
dimensional signal-subspace and an (L � K)-dimensional
noise-subspace. It follows that there exists a full-rank L�K
signal-subspace eigenvector matrix Es and a non-singular
K�K coupling matrix T such that: Es = A(u1; : : : ; uK)T.
Suppose this L-element array has been so con�gured to

contain two identical but translated (and possibly overlap-

ping) subarrays. Two ~L � 1 subarray manifolds a(1)(uk)

and a(2)(uk) may be formed out of the L�1 array manifold
a(uk) according to:

a
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def
= J

(1)
a(uk) (3)

a
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def
= J

(2)
a(uk) (4)

where J(1) and J
(2) are ~L � L full-rank subarray selec-

tion matrices. Because the two subarrays have been re-
quired to be identical but translated by �, the two sub-
array manifolds are related by the invariance phase factor,

q(uk)
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where � is the excitation sources' wavelength.

Two ~L�K signal-subspace eigenvector sub-matrices E(1)
s

and E
(2)
s may be formed using the same subarray selection

matrices J(1) and J(2):
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This matrix-pencil pair fE(1)
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non-singular matrix 	:
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That is, the k-th diagonal element [�]kk of the K �K di-
agonal matrix � equals the k-th eigenvalue of 	, and its
corresponding eigenvector constitutes the k-th column of
T
�1. In noiseless or asymptotic cases, all the above rela-

tions are exact. This means that when � � �

2
, the sources'

parameters fuk; k = 1; : : : ;Kg may be estimated as:

ûk
def
=

6 [�]kk

2��
�

k = 1; : : : ;K (9)

where 6 [�]kk denotes the principal argument of the phase
of [�]kk between �� and �.
Note also that ESPRIT does not directly estimate uk,

but only the invariant phase factors ej2�
�

�
uk . That is, when

� > �

2
, ESPRIT only yields cyclically ambiguous estimates

of uk (i.e., �k
def
= [(�

�
uk+1) mod 2]�1) but not uk directly.

This means that for � > �

2
, no one-to-one mapping exists

between uk and �k. What exists for each � is a set of
cyclically related candidates for uk:
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where nk is an integer in the range
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Note that this embodies a uni-dimensional problem be-
cause only one unknown parameter (uk) needs to be es-
timated for the k-th source. This is also a uni-invariance
problem because ej2�

�

�
uk represents the only invariance fac-

tor in the problem.

5. THE MULTI-DIMENSIONAL

MULTIPLE-SIZE INVARIANCE PROBLEM

Suppose there exist I distinct pairs of subarray manifolds,
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where D is the total number of parametric dimensions, u
(d)

k
is the d-th of the D parameters characterizing the k-th im-
pinging source. This represents a D-dimensional invariance
problem because the k-th source is parameterized by D dis-

tinct parameters, namely fu(1)
k
; : : : ; u

(D)

k
g.

This represents a multi-size invariance problem because

the invariances f�(d)

i
; ; d = 1; : : : ;D; i = 1; : : : ; Ig are not

all equal.
This case permits the exploitation of all spatial invari-

ances regardless of their sizes or their angular orientation
with respect to the coordinate axes. The i-th matrix-pencil
is obtained from two identical subarrays with the displace-
ment vector between them having a magnitude equal to
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Application of ESPRIT to this i-th matrix-pencil pair
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for wi;k the cyclically related set of candidate estimates:
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Relating to the azimuth-elevation direction-�nding prob-
lem with a uniform rectangular array, modify the nota-
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where 1 � ix < Lx �K; 1 � iy < Ly �K

may be used to form the subarray manifolds:
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Under noiseless or asymptotic conditions, the i-th matrix-
pencil's eigenvalue for the k-th impinging source (i.e.

ej2�
�i
�
wi;k), when correctly disambiguated, corresponds to

the phase

2�
�i

�
�wi;k(n

�
i;k)

def
= 2�

�i

�
!i;k + 2�n�i;k (24)

which is an a�ne function of �i. That is, for the k-th
source, each of the I matrix-pencil pairs corresponds to one

point (�(1)
i ; : : : ;�(D)

i ; 2��i
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hyperplane de�ned as:
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That is, all I diversely oriented matrix-pencil pairs together
de�ne for each incident source a separate D-dimensional
hyperplane through the origin The k-th hyperplane passes
through the origin and has the inverses of the Cartesian

direction-cosines fu(1)k ; : : : ; u
(D)

k g as its coe�cients in the

Cartesian coordinate system fx(1); : : : ; x(D)g. However,
(25) is expressed as a function of the unambiguous Carte-

sian direction-cosine u(d)k , which are of course not available.
Instead, available are only the cyclically ambiguous non-
Cartesian direction-cosine estimates
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The k-th hyperplane may be estimated as follows:
(1) Derive one hyperplane candi-

date that best �ts (in the least squares sense) the set of

points f(�(1)
i ; : : : ;�(D)

i ; �i

�
�wi;k(ni;k)); for i = 1; : : : ; Ig.

For example, in the uniform rectangular array two-
dimensional direction �nding problem:

~uk(n1;k ; : : : ; nI;k) =
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(b2)2 � b1b4
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where ci denotes the pre-determined weight assigned to
the estimate !i;k obtained from the i-th matrix-pencil,

and
PI

i=1
ci = 1. To minimize the estimation variance

of fû(1)
k
; : : : ; û

(D)

k
g, the weight ci should be chosen to be

inversely proportional to the expected variance of !̂i;k,
thereby realizing a maximum-ratio combiner. The variances
of f!i;k; ; i = 1; : : : ; Ig, being functions of array geometry
and the spatial invariances, may be readily pre-calculated
o�-line for certain "typical" scenarios prior to real-time data
measurement.
(2) Then compute the least-squares �tting error for each

D-dimensional hyperplane candidate in the above step.
For the uniform rectangular array two-dimensional direc-

tion �nding problem: MSEk(n1;k ; : : : ; nI;k)
def
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for d(�1 � !i;k)
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(3) Identify the one hyperplane candidate above with the
minimum �tting error as the estimate for the k-th hyper-
plane. Note that in noiseless or asymptotic cases, only the
true hyperplane would have zero �tting error if at least D
of the I matrix-pencils have linearly independent Cartesian
invariances, i.e. if2
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is full rank.
If �i

�
� 1 for any fi = 1; : : : ; Ig, then the set

fn1;k ; : : : ; nI;kg may take on a very large possible number
of values. The journal version of this work will present

a short cut such that Ni� instead of
QI

i=1
Ni candidates

need to be considered, where i� denotes the invariance rela-
tion that would yield the most accurate estimate based on
the aforementioned o�-line calculations of the invariances
of f�i;k ; i = 1; : : : ; Ig.
The above procedures have assumed that the correct set

of I direction-cosine estimates have been grouped for each
of theK impinging sources. This pairing may be achievable,
for example, by a procedure to be presented in the journal
version of this work.

7. SIMULATIONS

Simulations presented in Figure 1 demonstrate the e�cacy
and performance of the proposed algorithm. Two closely-
spaced equal-power narrowband uncorrelated sources from
fu1 = 0:73; v1 = 0:57g and fu2 = 0:79; v2 = 0:51g im-
pinge upon a 15 � 15 rectangular array uniformly spaced
at half-wavelength. The closed-form multi-invariance al-
gorithm computes the twelve spatial invariances equal
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The least-squares weights used for these twelve spatial in-
variances are respectively 0:1494, 0:1377, 0:0994, 0:0883,
0:0801, 0:0537, 0:0710, 0:0716, 0:0722, 0:0639, 0:0540 and
0:0587. The 12 sets of direction cosine estimates obtained
from the 12 matrix-pencils have been assumed to be cor-
rectly paired. There are 100 snapshots per experiment and
200 independent experiments per data point. The RMS
standard deviation plotted is equal to the square root of the
mean samples variances for fûk; v̂k; k = 1; 2g. A 30% to
60% reduction in estimation standard deviation is produced
by the proposed closed-form multi-invariance method rela-
tive to that of the single-invariance (per parametric dimen-
sion) method. The price paid is a fairly dramatic increase
in computational complexity.
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Figure 1: Proposed algorithm's superior performance.
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