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ABSTRACT

We address the problem of identi�cation of sinusoidal com-
ponents from observed data, which is fundamental for array
signal processing and spectral line decomposition. Joint de-
tection and estimation are proposed in a uni�ed Bayesian
framework, so that no preliminary estimate of the number
of signals is required. All unknown quantities are estimated
from a unique regularized �stochastic� likelihood function,
including the number of sources and statistical parameters.
The impulsive solution is modeled as a continuous Poisson-
Gaussian process. A powerful iterative technique is pro-
posed to maximize the posterior likelihood. Simulation re-
sults show that the method behaves particularly well for
small data sets, even for a single experiment.

1. INTRODUCTION

Evaluation of directions of arrival (DOAs) for array signal
processing and spectral line decomposition share a common
problem of identifying sinusoidal components. Considering
the DOA estimation problem, under the basic model of p
narrow-band planes waves impinging on a N -sensors uni-
form linear array from a set � of p distincts DOAs, the K
noisy observed data are usually modeled as

y(t) = A(�)x(t) + n(t) ; t = 1; : : : ;K (1)

where columns of matrix A(�) are the so-called �steering
vectors�. In the sequel, the additive noise n(t) is supposed
to be a white stationary, complex-valued circular Gaus-
sian process with zero mean and variance �

2
n, independent

from the signal amplitude vector x(t) and independent from
snapshot to snapshot. The problem is commonly presented
as a three-fold issue:

� A detection step, i.e., �nding the number p;
� A localization step, i.e., �nding the p DOAs in �;
� An estimation step, i.e., estimating the amplitude x
of each component.

As regards localization and estimation, the two last decades
have witnessed the impressive development of �high res-
olution� methods, either based upon eigendecomposition
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of the data covariance matrix (such as ESPRIT, MUSIC),
or upon maximum likelihood estimation, such as the well-
known Stochastic Maximum Likelihood (SML) method [1].
As regards detection methods, the most commonly used are
Akaike's information criterion (AIC) and Rissanen's mini-
mum description length (MDL). Both globally su�er from
a lack of robustness, especially in the realistic conditions of
a �nite and possibly small number of samples.

From a methodological point of view, one may wonder
why detection and localization have always been coped as
two separate issues. From intuitive considerations, trying
to evaluate the number of components before locating them
may rather seem an ine�cient division. For sake of overall
e�ciency, we propose a challenging approach, designed as
a unique and coherent localization procedure.

Our inspiration originates from the �eld of seismic de-
convolution, which basically amounts to estimating sparse
spike trains from scanned echoes. This issue is not very dif-
ferent from estimating DOAs from noisy data. The seismic
wavelet echoed at a given depth plays a comparable role
to the steering vector in the direction of a given source.
Yet, both problems are addressed using rather di�erent
terminology and methodology. In particular, �nding the
number of separate echoes is usually not splitted from lo-
calization in seismic data processing. On the other hand,
the ill-posed character of seismic deconvolution is acknowl-
edged and most modern deconvolution techniques resort to
regularization tools. The spiky nature of the unknown sig-
nal is the basic prior information which is taken into ac-
count. More speci�cally, Mendel and coworkers introduced
a Bayesian approach based on a discrete Bernoulli-Gaussian
(BG) prior model [2].

E�cient algorithmic strategies have been developped for
BG deconvolution [3]. We have recently adapted the BG
methodology to the analysis of superimposed complex sinu-
soids embedded in additive Gaussian noise [4]. However, it
is intrinsically limited by the discrete nature of the Bernoulli
part. In order to overcome this restriction, we propose an
original extension to a continuous Poisson-Gaussian (PG)
prior model. To our knowledge, the work of Kwakernaak is
the unique precursor in the �eld of PG deconvolution [5].



2. POISSON-GAUSSIAN PRIOR MODEL

Prior models for all unknown quantities are chosen in ac-
cordance with structural knowledge and qualitative infor-
mation, i.e., the expected impulsive structure of the solu-
tion. In this respect, a Poisson process with uniform inten-
sity � seems a natural choice for any set � of p DOAs.
Accordingly, the total number N(�) of events occuring
during the interval � obeys the Poisson probability law:
Pr(N(�) = p) = �

p
�
p
e
�� �

=p!, where � is the length of �.
Now let us consider the problem of de�ning a proper prior
likelihood function for any con�guration � of DOAs. Since
we cannot discriminate among the DOAs, � must be con-
sidered as a set rather than a vector. As a consequence, we
obtain the following expression for the probability density
of �, conditionally to the presence of p sources:

f(� jN(�) = p) = p!=�p if p = dim �

= 0 otherwise.
(2)

In a fairly natural way, we de�ne the a priori likelihood of

any angular sequence � as the product L(�;N(�) = p)
�
=

f(� jN(�) = p) Pr(N(�) = p): Provided we intrinsically
assume that p is the size of �, the notation can remain
implicit w.r.t. p and we get:

L(�) = �
p
e
�� �

: (3)

Conditionally to �, amplitudes vector x is assumed an
independent complex circular Gaussian vector with zero
mean and variance �

2. In other words, we choose a very
simple structure for the covariance matrix of source ampli-
tudes:

S
�
= E

�
x(t)x

y
(t) j�

�
= �

2
I: (4)

This is a slight di�erence with SML, since we prefer a simple
white assumption for the amplitudes rather than estimating
the covariance matrix based on averaging. Because one of
our main concerns is to devise an e�cient method even for
small data sets (especially for the case of one snapshot only,
as usually encountered in spectral analysis problem), we
substituted the structured form (4) for the usual approach.

3. ESTIMATION STRATEGY

Let H = (�; �2; �2n) gather the three hyperparameters. In
order to provide a fully unsupervised method, estimation
of H addressed in Section 5. For sake of clarity, we �rst
consider that H is known or previously estimated, and the
dependence of the likelihood functions w.r.t. H remains
implicit.

In [5], Kwakernaak proposed to maximize the joint pos-
terior likelihood function L(�;x ; y) w.r.t. both x and �,
but he also reported that such maximum a posteriori (MAP)
estimator leads to an overestimated number of detected
pulses. Indeed, it is clear from later contributions related to
BG deconvolution [2, 3] that a sequential estimation scheme
is far more reliable. Such an approach relies on the marginal

MAP (MMAP) solution b� as the maximizer of the marginal
posterior likelihood:

L(� ; y) =

Z
Cp

L(�;x ; y) dx = p(y j�)L(�)=p(y); (5)

where p(y j�) =
1

�NKjBjK
exp�

KX
k=1

y
y

k
B
�1
y
k

(6)

with the covariance matrix B:

B(�)
�
= E

�
y(t)y

y
(t) j�

�
= A(�)SA

y
(�) + �

2
nI: (7)

At this point, remember that SML maximizes (6) [1],
and no prior term is assumed w.r.t. �. On the other
hand, the Poisson prior (3) only depends on the size of �,
which is a �xed quantity in the framework of SML. In other
words, the Poisson prior likelihood introduces no distortion
in the localization step compared to SML. According to the
MMAP approach, the localization problem boils down to
the minimization of the regularized criterion:

C(�) =

KX
k=1

y
y

k
B
�1
y
k
+K ln jBj � p ln �: (8)

We prove in [6] that the criterion (8) has a global minimum

b� �
= argmin� C(�) if and only if � � 1.
As recommended in the �eld of BG deconvolution, the

localization step is followed by MAP estimation of the asso-
ciated complex amplitudes through maximization of

L(b�;x jy) w.r.t. x. Since the localization step provides an

estimated dimension bp = dim b�, the estimation step reduces
to a simple linear Gaussian problem. It is straightforward to
derive the following optimal estimate of source amplitudes,

for each snapshot: 8t : bx(t) = �
2Ay(b�)B�1(b�) y(t).

4. OPTIMIZATION STRATEGY

According to a global detection-localization approach, cri-
terion (8) has to be minimized w.r.t the components of �
but also to its dimension p. For, a powerful technique is
proposed which performs alternate maximization over dis-
crete and continuous sets, respectively based on Single Most
Likely Replacement (SMLR) [3] and on gradient descent.

(i) The SMLR step enables to perform �jumps� between
criteria in a numerically e�cient way, through basic vari-
ation in the current set of detected sources. Its objective
is not only to select a criterion, i.e., to �x p, but also to
provide relatively accurate DOA estimates on a grid.

(ii) The second step performs local minimization out of
the grid in the neighborhood of the discrete solution. The
dimension p of � is now held �xed. The role of this second
step is to let the p angles drift away from their initial posi-
tions, provided it ensures a further decrease of the criterion
C(�).

4.1. Minimization over a discrete grid

Let us consider the general form D
�
= (c1; : : : ; c`; : : : ; cL) for

a discrete grid composed of L points on domain �. The pa-
rameter L may take arbitrary large values, greater than the
number of sensors, in order to allow high resolution analysis.
Without prior knowledge about the location of the DOAs,
the discrete angles will be chosen equally spaced over do-
main �. Assuming that we restrain the search of the mini-
mizer of C(�) to the set PD of subsets of D, the numerical
problem arises in terms of combinatorial exploration, very



close to MMAP BG deconvolution. Exact optimization of
C(�) over PD would require 2L evaluations of the criterion,
which is computationally intractable for large values of L.
Instead, SMLR only performs partial combinatorial explo-
ration in an iterative way. Each iteration only explores a
set of neighboring sequences of the current sequence. The
algorithm is stopped when no neighboring sequence is more
likely than the current one, which is chosen as the �nal one.

Let �0 denote the current sequence, which is supposed
to belong to PD. We de�ne the neighborhood of �0 as the
set of L sequences �`, ` = 1; : : : ; L, that di�er from �0 by
one entry, i.e., whether �` = �0 [ fc`g or �0 = �` n fc`g.
For sake of readability, subscript ` (resp. 0) will refer to any
quantity related to �` (resp. �0). Let also a` stand for the
corresponding steering vector a(c`), and the scalar "` take
the value 1 (resp. -1) when c` is added to (resp. removed
from) �0. As a straightforward variation of [3], it can be
shown that the criterion is iteratively computable using:

C` = C0 � �
�1
`

KX
k=1

��yy
k
B
�1
0 a`

��2 +K ln
�
"` �

2
�`

�
� "` ln �;

where

y
y

k
B
�1
0 a` = �

�2
n y

y

k
a` � �

�2
n �

2
y
y

k
A0C

�1
0 A

y
0a`;

�` = "`�
�2

+ �
�2
n � �

�2
n �

2
a
y

`
A0C

�1
0 A

y
0a`;

are expressed in terms of the inverse of p � p matrix C
�
=

�
2AyA + �

2
n
I at �0. The update of matrix C�10 is only

needed once the optimal neighbor sequence is determined.
All quantities y

y

k
a` and y

y

k
A0 enter the L � K matrix

yyA(D), which can be computed at the beginning of the
procedure by discrete Fourier transform of the snapshots.
In the same way, Ay

0a` enter the L�L matrix A(D)yA(D),
which has an explicit form easily derived.

The initial sequence is chosen as the empty set, which
is the most favourable choice from the numerical viewpoint
since C(;) = �

2
n
I. Moreover, it avoids the search of �a good

initial solution�, in contrast with many existing methods.
Finally, each iteration involves O(KLp

2) complex opera-
tions. Convergence is reached in a �nite (practically small)
number of iterations since � spans a �nite set.

4.2. Local Minimization

Local minimization is based upon a gradient-type algorithm

�
(m+1)

= �
(m)

� �
(m) @C(�)

@�

����
�=�

(m)

where superscript (m) refers the mth iteration and �
(m)

stands for a steplength. It is initialized by the outcome of
the SMLR procedure.

In order to maintain low computational requirements,
we replace the original expression (8) of C(�) by an equiv-
alent expression involving p � p matrix C(�) rather than
N �N matrix B(�). In addition, since the prior term does
not depend on �, the gradient may be expressed as:

@C(�)

@�
= 2K<

�
diag

�
�
2DyAC�1

� �
�2
n C�1Ay bR �

I� �
2AC�1Ay

�
D

io

where bR �
= yyy=K is the empirical estimate of the sam-

ple covariance matrix. The evaluation of gradient essen-
tially involves the calculus of inverse matrix C�1 and some
additional matrix products, so that each iteration requires
O(p3 + (K +N)p2 +KNp) complex multiplications.

5. ESTIMATION OF HYPERPARAMETERS

5.1. MGL approach

The problem of estimating the hyperparameters from the
available data is now addressed. For this purpose, several
techniques have been designed in the related context of BG
deconvolution. We have selected a generalized marginal
likelihood approach [3] which consists in estimating simul-

taneously � and the hyperparameters set H through max-
imization of the Marginal Generalized Likelihood (MGL)
function p(y j� ; �2; �2

n
)L(� ; �), which is the joint proba-

bility density of (�;y). As a function of �, it is proportional
to the marginal posterior likelihood L(� ; y), so the MMAP

estimate b� is also the maximizer of L w.r.t. � when H is
held constant. Accordingly, we shall extend the notation
C introduced in (8) to designate the negative logarithmic
form of MGL:

C(� ; H) =

KX
k=1

y
y

k
B
�1
y
k
+K ln jBj � p ln �+ � �: (9)

Minimization of C(� ; H) w.r.t. � and H may be subopti-
mally performed using the iterative two-step scheme

b�i = arg min
�

C(� ; bHi+1) (10)

bHi+1 = arg min
H

C(b�i ; H) (11)

often referred to as a �Block component method�.The �rst
step (10) identi�es with the supervised procedure described
in section 4. The step (11) amounts to a 3-D optimization.

5.2. Estimation of parameter �

Estimation of intensity � can be achieved separately since
only the prior term L(� ; �) depends on �. Di�erentiat-
ing (9) w.r.t. � results in the following MMGL estimate:b� = bp=�: Note that � and b� are not dimensionless quanti-
ties, but rather numbers of events per angular sector. Ac-

cordingly, the numerical value of b� depends on the angular
unit. On the other hand, the behaviour of supervised es-
timation of � becomes pathological if � is strictly greater
than one. This is not only a potential source of degener-
acy, but also a source of arbitrariness regarding the choice
of angular unit that is not mentioned in [5], though it may
partly explain the degeneracies reported by Kwakernaak.
The intrinsic problem actually lies in the behaviour of the
MMAP estimator itself, which depends on the value of a
dimensioned quantity relatively to a constant. A drastic
solution would be to replace the MMAP estimator by an-
other Bayesian estimator. However, we found no substitute
candidate that would provide the same trade-o� between
numerical complexity and performance. Instead, a more
pragmatic approach is to ensure that � is lower than one.



For this purpose, we choose the sampling rate �=L used to
generate the grid D as the angular unit, since the value of
L must be already be chosen high enough with regard to
the expected number of sources and to the number N of

sensors. The result is b� = bp=L, which stays lower than one
in practice. Over�ow can be easily prevented anyway in the
SMLR step, where bp is updated.

5.3. Estimation of parameters �
2 and �

2
n

We now discuss the problem of minimizing (9) w.r.t. the
variances �2 and �

2
n
. As shown in [3], this may be reduced

to a one-dimensional optimization problem using an appro-
priate change of variable, for instance (�2; �2

n
) ! (�;�2

n
),

with �
�
= �

2
=�

2
n
. The whole procedure converges in a small

number of iterations (no more than ten in our practical ex-
periments) and it is easy to implement.

6. CONCLUSION

Joint detection and localization are performed within a uni-
�ed Bayesian framework, so that no preliminary estimate
of the number of sources is required. Compared to pre-
existing methods for estimating DOAs, the PG approach
leads to a penalized version of the SML method. If it
were constrained to a given number of sources, it would
only boil down to a simpli�ed version of the standard SML
estimator, for which the signal amplitude correlation ma-
trix S is taken proportional to identity. The PG method
should rather be viewed as a generalized version of SML
that allows to tackle an unconstrained number of sources.
Whereas usual SML would degenerate towards a meaning-
less maximal number of sources, it is shown that the new
PG version does theoretically provide a �nite set of sources
as the most likely one. Finally, all unknown quantities are
estimated from a unique regularized �stochastic� likelihood
function, including the number of sources, their locations
and statistical parameters H. Further works are currently
studied to valid extensions of the proposed estimation and
optimization techniques to SML-like frameworks.

7. SIMULATION RESULTS

Compared to standard information-based approaches, sim-
ulations results show that the PG method brings substantial
improvement in terms of detection performance, while it be-
haves as expected for su�ciently large data samples, quite
similarly to SML estimation in terms of localization perfor-
mance . Nevertheless, the PG method behaves particularly
better for small data sets, even for a single experiment, as
depicted below.
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