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ABSTRACT

In this paper, we present an entropy based approach for

DOA estimation in Gaussian and non-Gaussian environ-

ments. The DOA estimates are obtained by minimizing

an entropy measure of the array data in the noise sub-

space. We show that the entropy approach leads to the

MAP algorithm under the Gaussian assumption. Under

the non-Gaussian assumption, we apply the varimax norm

as an information measure. An intuitive consistency anal-

ysis is also performed. Computer simulations are used to

demonstrate the e�ectiveness of the proposed approach.

1. INTRODUCTIONS

For many sensor systems used in radar, sonar and commu-

nications systems, one of the most important problems is

to estimate the direction-of-arrival (DOA) of source signals.

Many techniques have been developed in recently years in-

cluding the subspace based algorithms [1] and the nonlin-

ear optimization based approaches [2]. They rely on the

assumption that the noise covariance be exactly known.

However, this assumption is not true and has always been

violated in practice.

Several approaches have been proposed to overcome the

di�culty of the unknown noise covariance problem. The

MDL (Minimum Description Length) method proposed by

Wax [3] is based on the Rissanen's MDL principle [4] and

can solve the detection and estimation problem simultane-

ously. The MAP (Maximum A Posteriori) algorithm [5] by

Wong et al. is a direct application of the Bayesian infer-

ence theory. In the MAP algorithm, a noninformative a

priori probability density function is assigned to the un-

known noise covariance and an integration process is used

to represent the ignorance of the unknown noise environ-

ment. Geometrically, the MDL method minimizes the vol-

ume occupied by the array data in both the signal and the

noise subspace while the MAP algorithm only minimizes

the projected volume of the array data in the noise sub-

space. These approaches require no parametric modeling

of the noise and thus show robust performance. However,

since these techniques are developed exclusively under the

Gaussian assumption, their performances deteriorate even

when the underlying signal and noise distribution deviates

slightly from Gaussian.

In this paper, we present an entropy based DOA estima-

tion approach for Gaussian and non-Gaussian correlated

noise environments. The estimation problem is considered

from an informational viewpoint. We formulate the entropy

approach as the one that minimizes the entropy of the array

data in the noise subspace. For Gaussian processes, we use

the Shannon entropy and show that the entropy approach

leads to the MAP method. We use the varimax norm as an

entropy measure for the more general case of non-Gaussian

processes and carry out the consistency analysis. The en-

tropy based approach makes no speci�c assumptions about

the distribution of the array data and will have wider ap-

plications in practice. Finally, computer simulations are

provided to demonstrate the e�ectiveness of the proposed

approach.

2. ARRAY SIGNAL MODEL

Consider an array of M omni-directional sensors. Assume

that there are K(K < M) source signals in the far-�eld of

the array. Using analytic representation, we can write the

array model as

x(t) = A(�0)s(t) + n(t); (1)

where

s(t) = [s1(t); s2(t); : : : ; sK(t)]
T

x(t) = [x1(t); x2(t); : : : ; xM (t)]T

n(t) = [n1(t); n2(t); : : : ; nM (t)]T ; (2)

are the array signal, data and noise vector, respectively, and

A(�0) is de�ned as the array composite steering matrix de-

termined by the array geometry and the DOA parameters.

We assume that A(�0) has full rank and the array ensures

unique estimation solution,

A(�1)T1 = A(�2)T2 =) �1 = �2; (3)

where T1 and T2 are any pair of full rank matrices. As-

sume that fs(t)g and fn(t)g are both i.i.d. processes with

zero mean and covariance matrices Rs and Rn, respectively.
We also assume that the fs(t)g and fn(t)g are statistically
independent.

3. ENTROPY APPROACH FORMULATION

De�ne the signal subspace Hs as the K dimensional sub-

space spanned by the columns of A(�), where � is the as-

sumed DOA parameter, and the noise subspace Hn as the



orthogonal complementary subspace of Hs. We decompose

the array data into its components in the noise subspace.

Let U(�) denote a set of orthonormal basis of the noise

subspace, assuming that � is given. The noise subspace

components are given by the projection of the array data

onto the noise subspace as

y(t) = UH(�)x(t)

= = U
H
(�)A(�0)s(t) + U

H
(�)n(t): (4)

We formulate the entropy approach for DOA estimation

as the one that minimizes the entropy of the array data in

the noise subspace

�̂ = argmin
�

h[y(t)]; (5)

where h[�] denotes an entropy measure.

3.1. Gaussian assumption

Assume that the signal and the noise processes follow the

Gaussian distribution. It follows that the noise subspace

component y(t) is also Gaussian distributed. We use the

Shannon entropy as an information measure. The Shannon

entropy of a random variable x with a probability density

function f(x) is de�ned by

hs(x) = �

Z
S

f(x) log f(x)dx; (6)

where S is the support set of x. For a multivariate Gaussian
process, the entropy is proportional to the determinant of

its covariance [6]. Then, criterion (5) can be written as

�̂ = argmin
�

detfUH(�)RxU(�)g: (7)

Criterion (7) can be interpreted as minimizing the geometric

volume of the array data covariance in the noise subspace.

In practical applications, since the exact array data covari-

ance is usually not available, we replace Rx by its maximum

likelihood estimate

R̂x =
1

N

NX
t=1

x(t)xH(t); (8)

where N is the number of array data. The criterion of the

entropy approach under the Gaussian assumption becomes

�̂ = argmin
�

detfUH(�)R̂xU(�)g: (9)

which is identical to the MAP algorithm [3] based on the

Bayesian inference theory.

Since, by the ergodic theorem, the distribution of the

array data tends to its theoretical distribution as N in-

creases and the maximum likelihood estimate R̂x converges
to Rx asymptotically with probability one [7], the entropy

approach criterion (9) approaches its theoretical version (7).

Consider the covariance of the array data in the noise sub-

space

Rxn = Rsn +Rnn; (10)

where Rxn = UH(�)RxU(�), Rnn = UH(�)RnU(�) and
Rsn = UH(�)A(�0)RsA(�0)U(�). Taking the determi-

nant of (10), we have the following inequality as

det(Rxn)
1

M�K � det(Rsn)
1

M�K + det(Rnn)
1

M�K : (11)

where the equality holds only when either Rns or Run is

a zero matrix, or Rsn = Rnn. Since Rnn is assumed to

be unknown, we use a noninformative a priori probabil-

ity density function so that it reects our ignorance of the

noise environments [12]. The general rule of obtaining the

noninformative a priori probability density function of a

set of parameters is to take the one that is proportional to

the square root of the determinant of the information ma-

trix. In [3], the noninformative a priori probability density

function of Rnn under the Gaussian assumption has been

derived as

p(R�1un j �) / fdet(R�1un)g
�(M�K): (12)

To ignore the e�ects of Rnn, we multiply both sides of (11)

by p(R�1nn) and integrate them over R�1nn

det(Rxn)
1

M�K � det(Rsn)
1

M�K + const.; (13)

where we have used

Z 1

�1

p(R�1nn)dR
�1
nn = 1: (14)

Inequality (13) implies that det(Rux) attains minimum

if and only if Rsn is zero. This is possible only when

UH(�)A(�0) = 0. Then, it follows from the uniqueness

condition (3) that the source DOA parameters estimated

by minimizing the determinant of array covariance in the

assumed noise subspace converge to �0 as N increases.

We examine the case when the sensor noise is known to

be spatially white with a common variance, i.e., Rn = �2nI,
where I denotes the identity matrix and �2n is the common

noise variance. Assuming that Rsn is positive, we have

fdet(Rux)g
1=(M�K)

= min
G

1

M �K
trfRuxGg; (15)

where G is restrained to be positive and det(G) = 1. Using

the basic inequality relationships, we can obtain

min
�

detfUH(�)R̂xU(�)g = min
�

1

M �K
trfP?A(�)Rxg;

(16)

where P?A(� is the orthogonal projector onto the null space

of AH(�). When we replace Rx with empirical estimate

R̂x, it becomes clear that the entropy approach reduces to

the deterministic maximum likelihood (DML) method in-

troduced by Ziskind and Wax [8].



3.2. Non-Gaussian assumption

Assume that the signal and the noise process are both non-

Gaussian distributed. It is known that a Gaussian process

is characterized by its second-order statistics while non-

Gaussian processes contain valuable statistical information

in their higher order moments. For a general class of non-

Gaussian processes, it is di�cult to calculate the entropies

when their exact distributions are not provided.

The varimax norm has been de�ned by data analysts

[9][10] in trying to �nd a simple representation of set of or-

thogonal vectors. The varimax norm measures the simplic-

ity of a signal. Maximizing the varimax norm has the e�ects

of simplifying the appearance or the entropy of a signal.

The minimum entropy deconvolution (MED) [11] by Wig-

gins is one successful application of the varimax norm to the

blind deconvolution problem. The computation of the vari-

max norm approach depends only on the empirical distri-

bution of the data and requires no statistical assumptions.

The varimax norm of a sequence fx(t); t = 1; 2; : : : ; Ng is

de�ned as

V (x) =

PN

t=1
j x(t) j4

f
PN

t=1
j x(t) j2g2

: (17)

When using the varimax norm as an information measure,

the entropy approach criterion (5) becomes

�̂ = argmax
�

M�KX
m=1

V (ym(t)); (18)

where ym(t) denotes the m
th component of y(t) and

V (ym(t)) =

PN

t=1
j ym(t) j

4

f
PN

t=1
j ym(t) j2g2

; (19)

denotes the varimax norm of ym(t) in the temporal domain.

The entropy approach can be interpreted as the one that

minimizes the simplicity of the appearance, or the entropy,

of the noise subspace components of the array data.

The consistency of the entropy approach is di�cult to be

rigorously proven. However, we will provide some useful

intuitive justi�cations as follows. Since the varimax norm

V (y) is related to the sampled Kurtosis of fym(t)g and,

as N increases, approaches its theoretical Kurtosis by the

ergodic theorem, we can study the theoretical criterion

Vt(y) =

M�KX
m=1

Vk[ym(t)] =

M�KX
m=1

C4[ym(t)]

C2
2 [ym(t)]

; (20)

instead, where Vk[�] denotes the Kurtosis and

Ci[ym(t)] = Efj ym(t) j
ig; i = 2; 4: (21)

Let X be a set of random variables with �nite variances

which is closed under linear combinations, that is,
P

aiXi+

ci is in X when ai and ci are constants. We use the concepts

of equivalency and partial order introduced by Donoho [12].

Two random variables X and Y are regarded as equivalent,

written X
:
= Y , if for some constants c and a 6= 0, aX + c

has the same distribution as Y . The partial order X� � Y
means that for constants faig with

P
a2i <1,

Y
:
=
X

aiXi; (22)

where Xi are independent copies of X. For X in X and Z
Gaussian,

X� �
X

aiXi� � Z; (23)

this order is strict unless either (a) X is Gaussian or (b) X
is not Gaussian, but the linear combination is trivial (no

two ai's are nonzero) [12].
Relation (11) implies that the linear combinations of in-

dependent random variables are more nearly Gaussian than

any individual component of the combination. Thus, we

can interpret the partial order X� � Y as Y being more

Gaussian than X. Expressing ym(t) as

ym(t) =

KX
i=1

�isi(t) +

MX
i=1

�ini(t); (24)

where �i and �i are determined by UH(�)A(�0) and U(�),
respectively, we have

MX
i=1

�ini(t)� � ym(t); (25)

where the equality holds only when f�ig are all zeros, and

MX
i=1

�ini(t)� > ym(t); (26)

where the inequality is strict since f�ig are elements of U(�)
which cannot be all zeros. In [12], it has been shown that the

Kurtosis agrees with the partial order, i.e., for two random

variables X and Y ,

X� � Y implies Vk(X) � Vk(Y ): (27)

It follows that the partial order (25) can be transformed

into the following inequality

Vk(ym(t)) � Vk(

MX
i=1

�ini(t)): (28)

Vk(ym(t)) reaches its maximum when the equality holds.

According to (25), Vk(ym(t)) is maximum only when f�ig
are all zeros. When maximizing the Kurtosis for m =

1; 2; : : : ;M �K, we can write the necessary condition as

UH(�)A(�0) = 0; (29)

which is valid if and only if � = �0. Thus, the consistency

of the entropy approach is readily established.

4. NUMERICAL EXAMPLES

An equispaced linear array of M = 6 sensors is simulated

with half the source wavelength spacing. Two uncorrelated

unit power narrow-band source signals are assumed to be in

the far-�eld of the array at electrical angles �i = � sin �i =
� 1

8
(2�=M); i = 1; 2, to the normal of the array. The source
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Figure 1. The MSE of the estimates by the entropy

approach and the MAP algorithm.

and the noise process are assumed to follow the distribution

of a mixture model

p[n(t)] = (1 � �)N (Rm;0) + �Q; (30)

where Q denotes the uniform distribution in [�1; 1] and N
represents the Gaussian distribution. Rm is the covariance

with its mnth element given by

rmn = �jm�nj exp(j�p(m� n)); (31)

where � = 0:9 and �p = �=8. We choose the mixture co-

e�cient as � = 0:6. Fig. 1 shows the mean squares error

(MSE) of the estimated DOA's versus SNR for the MAP

algorithm and the entropy approach. For each simulation,

1000 samples are used and each test is repeated 100 times

to obtain the average results. It can be seen that the en-

tropy approach outperforms the MAP algorithm when the

sensor noise is not Gaussian.

5. CONCLUSIONS

The entropy based DOA estimation approach has been dis-

cussed in this paper. This approach is applicable to Gaus-

sian and non-Gaussian correlated noise environments. It

has the advantage of making no speci�c assumptions about

the distribution of the array data and will have wider ap-

plications in practice. Rigorous analysis of its consistency

under the non-Gaussian assumption still needs further in-

vestigations.
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