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ABSTRACT

We present a comparative study of using the IQML (it-
erative quadratic maximum likelihood) algorithm and the
MODE (method of direction estimation) algorithm for di-
rection-of-arrival estimation with a uniform linear array.
The consistent condition and the theoretical mean-squared
error for the parameter estimates of IQML are presented.
The computational complexities of both algorithms are also
compared. We show that the frequency estimates obtained
via MODE are asymptotically statistically e�cient, while
those obtained via IQML are almost always inconsistent and
hence ine�cient. We also show that the amount of compu-
tations required by IQML is usually much larger than that
required by MODE, especially for low signal-to-noise ratio
and large number of snapshots.

1. INTRODUCTION

The iterative quadratic maximum likelihood (IQML) algo-
rithm [1, 2] is a popular algorithm for direction-of-arrival
(DOA) estimation with a uniform linear array (ULA) and
IQML is used to approximate the global minimizer of a
deterministic maximum likelihood criterion. However, the
direction estimates obtained by using IQML are almost al-
ways inconsistent.
In this paper, the consistent condition and the theoreti-

cal performance of the IQML algorithm are presented. We
also compare the performance and the computational com-
plexity of IQML with those of a similarly structured algo-
rithm, the MODE (method of direction estimation) algo-
rithm [3], which is an asymptotically statistically e�cient
estimator for the stochastic data model. We show that the
direction estimates obtained via IQML are almost always
inconsistent and hence ine�cient and the bias dominates
the mean-squared error (MSE) of the estimates asymptot-
ically. We also show that the amount of computations re-
quired by IQML is usually much larger than that required
by MODE, especially for low signal-to-noise ratio (SNR)
and large number of snapshots.

2. PROBLEM FORMULATION

The problem of �nding the DOAs of K narrow-band plane
waves impinging on a ULA of M sensors can be re-
duced to that of estimating the spatial frequencies f =
[ f1 f2 � � � fK ]T in the following model:

y(n) = Ax(n) + e(n); n = 0; 1; � � � ;N � 1; (1)

where y(n) 2 CM�1 is the noisy observation vector, x(n) 2
CK�1 is the signal vector, e(n) 2 CM�1 is an unmeasurable
noise process, N is the number of the data snapshots, and

A =
�
a1 a2 � � � aK

�
2 C

M�K
; (2)

with

ak =
�
1 ej2�fk � � � ej2�fk(M�1)

�
T

2 CM�1;

k = 1; 2; � � � ;K:
(3)

Here (�)T denotes the transpose. We assume that the signal,
x(n), and the noise, e(n), are independent zero-mean com-
plex Gaussian random processes with the following second-
order moments:

Efx(n)xH (l)g = P�n;l; Efx(n)xT (l)g = 0;

Efe(n)eH (l)g = �2I�n;l; Efe(n)eT (l)g = 0;
(4)

where Ef�g indicates the expectation, (�)H denotes the com-
plex conjugate transpose, P 2 CM�M is the unknown signal
covariance matrix, I 2 CM�M is the identity matrix, �n;l
represents the Kronecker delta, and �2 is the noise power.

3. CONSISTENT CONDITION OF IQML

Let fbkg
K

k=0
be de�ned through the following polynomial:

p(z)
4

= b0z
K+ b1z

K�1+ � � �+ bK
4

= b0

KY
k=1

(z� e
j2�fk ); (5)
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0 bK
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M�(M�K)
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and

vec(B)
4

= �Ib = �IWp
4

= Up; (7)

where b =
�
b0 b1 � � � bK

�
, vec[X] denotes the vector

[ xT1 xT2 � � � xT
K

]T with fxkg
K

k=1 being the columns of
X,

�I =

h
I 0 � � � 0

... � � �
... 0 � � � 0 I

i
T

; (8)



W 2 C(K+1)�(K+1) denoting a matrix made from 0, 1, �j,
and p is a real-valued (K + 1)-vector. Let u be a given
constraint vector such that uTu = uTp = 1. We can prove
that under the conjugate symmetry constraint [3]

bk = b
�

K�k; k = 0; 1; � � � ;K; (9)

the estimates obtained with the IQML algorithm (after con-
vergence, whenever this appears) are consistent only if [5]

Re
n
U
Hvec

h
B
�
B
H
B
��1io

� u; (10)

where x � u means that x is parallel to u. Note that (10)
depends on p only, that is, it depends on neither the signal
covariance matrix P nor the noise power �2.
The condition on p in Equation (10) is almost never sat-

is�ed. More exactly, this condition imposes nontrivial con-
strains on the components of p, which are only satis�ed on
zero-measure sets in the parameter space. To illustrate this
fact, we consider a simple example in what follows.

Consider the usual choice of u =
�
1 0 � � � 0

�
T

.
Also, let K = 1 and M = 2. The conjugate symmetry
constraint in (9) can be written as:�

b0
b1

�
=

�
1 j

1 �j

��
Re(b0)
Im(b0)

�
4

=Wp: (11)

Furthermore, for M = 2 and K = 1, we have B =�
b0 b1

�
T

, which implies that U = W. Hence, from
(10), we obtain:

Re[j(b1 � b0)] = 2Im(b0) = 0; (12)

which shows that the IQML is consistent in this case only if
b0 is real-valued. To translate this condition into one on the
frequency parameters, note from (5) that b�0 + b�1e

j2�f = 0,
which is equivalent to ej2�f = �1. For f 2

�
�0:5 0:5

�
,

the solution are f = �0:5. It follows that the consistency
condition in (10) is satis�ed if and only if f = �0:5 (this
would correspond to end-�re positions).

4. THEORETICAL PERFORMANCE

We present below the asymptotic (for large N) statistical
performance of IQML and MODE.

4.1. Performance of IQML

Let V be any (K + 1) �K matrix such that
�
u V

�
is

an orthogonal matrix. To eliminate the constraint on p, let
q be a real-valued K � 1 vector such that p = Vq + u.

Let � = VTUH
�
�B( �BH �B)�1

�
T


 I with 
 denoting the

Kronecker matrix product and �B being de�ned similarly
to B except that fbkg in B is replaced by its IQML es-

timate when N ! 1, � =
�
rT
i

 rj

	
M
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. Let D =

�ImfD1D
�1
2 D3WVg, where D1 = diagfz�1 ; z

�

2 ; � � � ; z
�

K
g

with fzkg denoting the zeros of the polynomial p(z) in (5),

D2 = diagf�1; �2; � � � ; �Kg with �k =
P

K

i=0
(K� i)zK�i�1

k
bi,

and D3 is a Vandermond matrix obtained from fzmg
K

m=1

that is rotated 90� clock-wise.
We can prove that the asymptotic MSE of f̂ obtained

with IQML is:

MSE
�
f̂
�
= 1

2N(2�)2
D
�
��1Re

�
���T +�(RT 
R)�

�H
	
��T + (�q� q)(�q� q)T

�
DT ;

(13)
where �q is the estimate of q obtained by IQML when N !

1.

4.2. Performance of MODE

It has been shown in [3] that MODE is an asymptotically
(for large N) statistically e�cient estimator and the MSE of
the estimates obtained via MODE asymptotically reaches
the following Cramer-Rao bound (CRB):

CRB
�
f̂
�
=

�2

2N

�
Ref(DH

f P
?

ADf )� (SAH
R
�1
AS)T g

�
;

(14)

whereP?A = I�A
�
AHA

��1
AH ,� denotes the Hadamard

(or Schur) product, i.e., element-wise matrix multiplication,
and the kth column of Df is @ak=@fk; k = 1; 2; � � � ;K:

We note that MSE(f̂) is di�erent from CRB(f̂). Fur-

thermore, the di�erence betweenMSE(f̂) and CRB(f̂) be-
comes more signi�cant as N increases since the IQML esti-
mates are almost always biased.

5. COMPUTATIONAL COMPLEXITIES

5.1. Computations of IQML

An e�cient implementation of the IQML algorithm for N =
1 is presented in [4]. The implementation can be readily
extended to the case of N > 1, where the estimate of p is
given by the following iterative procedure:

p̂(l+1) = minp
�
pHRe

�
WH

P
N�1

n=0

�
Y(n)H(BH

l
Bl)

�1�

Y(n)]Wgpg ;

(15)
where Bl is de�ned similarly to B except that b in B is
replaced by b̂l =Wp̂(l),

Y(n) =

2
664

yK+1(n) yK(n) � � � y1(n)
yK+2(n) yK+1(n) � � � y2(n)

...
...

. . .
...

yM (n) yM�1(n) � � � yN�K(n)

3
775 ; (16)

with ym(n) being the mth element of y(n).
The idea of [4] is to reduce the amount of computations

by utilizing the facts that Bl is a banded Toeplitz matrix
and BH

l
Bl is a banded Hermitian matrix.

The steps and the amount of computations required in
each step of minimizing (15) are summarized as follows:
Step 1: Compute C = BH

l
Bl. This step requires

O
�
1
2
(K + 1)(K + 2)

�

ops.

Step 2: Compute the Cholesky decomposition GGH

of C. This step requires about O
�
(M �K)

�
1
2
K2 + 3

2
K
��


ops.



Step 3: Compute Z(n) = G�1Y(n); n = 0; 1; � � � ;N�
1: This step requires O

�
(M �K)(K + 1)2N

�

ops.

Step 4: Compute 	(n) = ZH(n)Z(n); n =
0; 1; � � � ;N � 1: Since Z(n) is an (M � K)� (K + 1) ma-
trix, with the considerations of the Hermitian structure in
this matrix and n = 0; � � � ;N � 1, we know that this step
requires about O

�
1
2
(M �K)(K + 2)(K + 1)N

�

ops.

Step 5: Compute 
 = Re
�
WH

�P
N�1

n=0
	(n)

	
W
	
.

This step requires about O
�
2(K + 1)3 + 2(K + 1)2N

�

ops.
Step 6: Compute p̂ = argminp

�
pT
p

	
such that

uTp = 1. This step requires about O
�
1
3
K3
�

ops.

Let L denote the number of iterations required by the
IQML algorithm to achieve convergence. ForN �M � K,
which occurs often in angle estimation applications, IQML
requires about O

�
1
2
(K + 1)(3K + 4)(M �K)NL

�

ops.

5.2. Computations of MODE

The MODE algorithm estimates b by

b̂ = argmin
b

tr

�
(ŜHB)(BH

B)�1(BH
Ŝ)

^̂
�

�
; (17)

where the columns in Ŝ 2 CM�
�K are the eigenvectors of

R̂ = 1
N

P
N�1

n=0
y(n)yH(n) that correspond to the �K ( �K =

minfN; rank(P)g) largest eigenvalues of R̂, �̂1 � �̂2 � � � � �

�̂ �K , respectively, and

^̂
� = diag

�
(�̂1 � �̂2)2

�̂1
;
(�̂2 � �̂2)2

�̂2
; � � � ;

(�̂ �K � �̂2)2

�̂ �K

�
;

(18)
with

�̂
2 =

1

M � �K

(
trfR̂g �

�KX
l=1

�̂l

)
: (19)

Let

[~s1 � � � ~s �K ]
4

=

2
4 ~s1;1 � � � ~s1; �K

...
...

~sM;1 � � � ~s
M; �K

3
5 4

= Ŝ
^̂
�

1

2

; (20)

and

BH~sk =

2
4 ~sK+1;k � � � ~s1;k

...
...

~sM;k � � � ~sM�K;k

3
5b 4

= ~Skb: (21)

MODE �rst obtains the initial estimate p̂0 of p by

p̂0 = argmin
p






�

RefH0Wg

ImfH0Wg

�
p






2

; (22)

where

H0 =

2
64

~S1
...
~S �K

3
75 2 C �K(M�K)�(K+1)

; (23)

and then obtains the re�ned estimate p̂ by

p̂ = argmin
p






�

RefHWg

ImfHWg

�
p






2

; (24)

where

H =

2
64

~G�1~S1
...

~G�1~S �K

3
75 2 C �K(M�K)�(K+1)

; (25)

and ~G denotes the Cholesky factor of matrix ( ~BH ~B) with ~B

being formed with ~b =Wp̂0 and k�k denotes the Euclidean
norm. The steps required by the MODE algorithm are:

Step 1: Compute R̂ = 1
N

P
N�1

n=0
y(n)yH(n). This step

requires O
�
1
2
M(M + 1)N

�

ops.

Step 2: Compute the �K dominant eigenvalues and the
corresponding eigenvectors of R̂. This step requires about
O
�
2 �KM2

�

ops.

Step 3: Compute p̂0. For simplicity, we assume that
u = [ 1 0 � � � 0 ]T . Let


0 =

�
Re fH0Wg

Im fH0Wg

�
4

= [ 
01

... 
02
]; (26)

where 
01 2 C2
�K(M�K)�1 and 
02 2 C2

�K(M�K)�K. Let

02 be QR decomposed as


02 =
�
Q01 Q02

� � R0

0

�
; (27)

where Q01 2 C2
�K(M�K)�K, and [Q01 Q02] and R0 2

CK�K, respectively, are the orthogonal and upper trian-
gular matrices. Then we have

p̂0 =

�
1
q̂0

�
; (28)

with

q̂0 = R
�1
0 Q

H

01
01: (29)

Since O
�
2 �K(M �K)(K + 1)2

�

ops are required to com-

pute 
0 = H0W, O
�
2
3
�K(M � k)K2 � 1

3
K3
�

ops are re-

quired to obtain Q01 and R0, O
�
�K(M �K)K

�

ops are re-

quired to compute QH

01
01, and O
�
1
2
K2
�

ops are required

to obtain p̂0 by back substitution. This step requires about
O
�
�K(M �K)

�
2(K + 1)2 + 3

2
K2 +K

�	

ops.

Step 4: Compute p̂. From Steps 1-3 of IQML and Step 3
of MODE, we note that O

�
1
2
(K + 1)(K + 2)

�

ops are re-

quired to compute ~C = ~BH ~B, O
�
(M �K)( 1

2
K2 + 3

2
K)
�


ops are required to compute the Cholesky factor ~G of
~C, O

�
2 �K(K + 1)2(M �K)

�

ops are required to compute

H, O
�
2 �K(M �K)(K+ 1)2

�

ops are required to compute


 = HW, and O
�
�K(M �K)

�
3
2
K2 + (K + 1)2 +K

�	

ops are required to compute
p̂ by minimizing k
pk2. Thus, this step requires about
O
�
�K(M �K)

�
5(K + 1)2 + 3

2
(K2 +K + 1)

�	

ops.
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(a) For !1 = 2�(0:02).
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(b) For !2 = 2�(0:10).

Figure 1. RMSEs of estimates obtained by MODE (\o"),
I-MODE (\+"), and IQML (\*") for coherent signals as a
function of N when M = 10, K = 2, �2 = 1, and P = E

where all elements in E are 1's. The solid lines are for the
CRB and the dashed lines are for the theoretical RMSE of
IQML.

For N � M � K, MODE requires about
O
�
1
2
(M + 1)MN

�

ops. Therefore, for N � M � K,

the ratio 
 between the numbers of the 
ops required by
IQML and MODE is about


 =
(K + 1)(3K + 4)(M �K)L

M(M + 1)
: (30)

6. NUMERICAL EXAMPLE

Figure 1 shows the comparison of the CRBs and the the-
oretical RMSEs (Root-Mean-Squared Errors) of IQML as
a function of N together with the corresponding RMSEs
of the frequency estimates obtained by using MODE and
IQML for !k = 2�fk, k = 1; 2; � � � ; K, via 100 Monte-Carlo
simulations. We note that the RMSEs obtained with IQML
and MODE, respectively, approach the theoretical RMSE of
IQML and the CRB as N increases. The di�erence between
the theoretical RMSE of IQML and the CRB becomes more

signi�cant as N increases since the IQML estimates are al-
ways biased. We also note that the performance of MODE
is worse than that of IQML for N < 20. For this case, we
can iterate Step 4 of MODE a few times to improve its per-
formance. We refer to this approach as the iterative MODE

or I-MODE. The RMSEs of I-MODE estimates in Figure
1 are obtained by iterating Step 3 of MODE 5 times. We
note that the performance of I-MODE is better than that
of IQML and MODE for small N . For large N , the perfor-
mance of I-MODE is about the same as that of MODE and
hence the iterations are not necessary.
For this example, IQML requires about 10 iterations on

average. For N = 10, 100, and 1000, the number of 
ops
required by IQML is, respectively, about 5, 18, and 23 times
of that required by MODE and about 2, 12, and 21 times of
that by I-MODE. These results approximately agree with
the ratio given in Equation (30).
When �2 in the previous example is increased to 10 and

all other parameters remain the same, the ratios between
the number of 
ops required by IQML and those by MODE
become 20, 60, and 80 for N = 10, 100 and 1000, respec-
tively. This is because the average number of iterations
required by IQML is increased to about 35 for this case.

7. CONCLUSIONS

We have presented a comparative study of using the IQML
and MODE algorithms for DOA estimation with a ULA.
The consistent condition and the theoretical performance of
IQML have been presented. The computational complexi-
ties of both algorithms have also been compared. We have
shown that the frequency estimates obtained via MODE are
asymptotically statistically e�cient, while those obtained
via IQML are almost always inconsistent and hence ine�-
cient. We have also shown that the amount of computa-
tions required by IQML is usually much larger than that
required by MODE, especially for low SNR and large num-
ber of snapshots.
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